Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chj0 | Structured version Visualization version GIF version |
Description: Join with Hilbert lattice zero. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chj0 | ⊢ (𝐴 ∈ Cℋ → (𝐴 ∨ℋ 0ℋ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7344 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ∨ℋ 0ℋ) = (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∨ℋ 0ℋ)) | |
2 | id 22 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → 𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)) | |
3 | 1, 2 | eqeq12d 2752 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐴 ∨ℋ 0ℋ) = 𝐴 ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∨ℋ 0ℋ) = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) |
4 | h0elch 29905 | . . . 4 ⊢ 0ℋ ∈ Cℋ | |
5 | 4 | elimel 4542 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∈ Cℋ |
6 | 5 | chj0i 30105 | . 2 ⊢ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∨ℋ 0ℋ) = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) |
7 | 3, 6 | dedth 4531 | 1 ⊢ (𝐴 ∈ Cℋ → (𝐴 ∨ℋ 0ℋ) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ifcif 4473 (class class class)co 7337 Cℋ cch 29579 ∨ℋ chj 29583 0ℋc0h 29585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cc 10292 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 ax-mulf 11052 ax-hilex 29649 ax-hfvadd 29650 ax-hvcom 29651 ax-hvass 29652 ax-hv0cl 29653 ax-hvaddid 29654 ax-hfvmul 29655 ax-hvmulid 29656 ax-hvmulass 29657 ax-hvdistr1 29658 ax-hvdistr2 29659 ax-hvmul0 29660 ax-hfi 29729 ax-his1 29732 ax-his2 29733 ax-his3 29734 ax-his4 29735 ax-hcompl 29852 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-omul 8372 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-acn 9799 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-n0 12335 df-z 12421 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ico 13186 df-icc 13187 df-fz 13341 df-fl 13613 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-rlim 15297 df-rest 17230 df-topgen 17251 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-top 22149 df-topon 22166 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-lm 22486 df-haus 22572 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-cfil 24525 df-cau 24526 df-cmet 24527 df-grpo 29143 df-gid 29144 df-ginv 29145 df-gdiv 29146 df-ablo 29195 df-vc 29209 df-nv 29242 df-va 29245 df-ba 29246 df-sm 29247 df-0v 29248 df-vs 29249 df-nmcv 29250 df-ims 29251 df-ssp 29372 df-ph 29463 df-cbn 29513 df-hnorm 29618 df-hba 29619 df-hvsub 29621 df-hlim 29622 df-hcau 29623 df-sh 29857 df-ch 29871 df-oc 29902 df-ch0 29903 df-chj 29960 |
This theorem is referenced by: mdsl0 30960 atordi 31034 chirredlem2 31041 chirredlem3 31042 |
Copyright terms: Public domain | W3C validator |