| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dipass | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ipass.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ipass.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| Ref | Expression |
|---|---|
| dipass | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipass.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | fveq2 6840 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 3 | 1, 2 | eqtrid 2776 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 4 | 3 | eleq2d 2814 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 5 | 3 | eleq2d 2814 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐶 ∈ 𝑋 ↔ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 6 | 4, 5 | 3anbi23d 1441 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))))) |
| 7 | ipass.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 8 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 9 | 7, 8 | eqtrid 2776 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑆 = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 10 | 9 | oveqd 7386 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴𝑆𝐵) = (𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)) |
| 11 | 10 | oveq1d 7384 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶)) |
| 12 | ipass.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 13 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (·𝑖OLD‘𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 14 | 12, 13 | eqtrid 2776 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 15 | 14 | oveqd 7386 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
| 16 | 11, 15 | eqtrd 2764 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
| 17 | 14 | oveqd 7386 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
| 18 | 17 | oveq2d 7385 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴 · (𝐵𝑃𝐶)) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
| 19 | 16, 18 | eqeq12d 2745 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)) ↔ ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)))) |
| 20 | 6, 19 | imbi12d 344 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))))) |
| 21 | eqid 2729 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 22 | eqid 2729 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 23 | eqid 2729 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 24 | eqid 2729 | . . . 4 ⊢ (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 25 | elimphu 30801 | . . . 4 ⊢ if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) ∈ CPreHilOLD | |
| 26 | 21, 22, 23, 24, 25 | ipassi 30821 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
| 27 | 20, 26 | dedth 4543 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))) |
| 28 | 27 | imp 406 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4484 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 + caddc 11049 · cmul 11051 abscabs 15177 +𝑣 cpv 30565 BaseSetcba 30566 ·𝑠OLD cns 30567 ·𝑖OLDcdip 30680 CPreHilOLDccphlo 30792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 ax-mulf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-ioo 13288 df-icc 13291 df-fz 13447 df-fzo 13594 df-seq 13945 df-exp 14005 df-hash 14274 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15431 df-sum 15630 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19232 df-cmn 19697 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-cn 23148 df-cnp 23149 df-t1 23235 df-haus 23236 df-tx 23483 df-hmeo 23676 df-xms 24242 df-ms 24243 df-tms 24244 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-ph 30793 |
| This theorem is referenced by: dipassr 30826 dipsubdir 30828 siilem1 30831 hlipass 30893 |
| Copyright terms: Public domain | W3C validator |