![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipass | Structured version Visualization version GIF version |
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipass.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ipass.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipass | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipass.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | fveq2 6906 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
3 | 1, 2 | eqtrid 2786 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
4 | 3 | eleq2d 2824 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
5 | 3 | eleq2d 2824 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐶 ∈ 𝑋 ↔ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
6 | 4, 5 | 3anbi23d 1438 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))))) |
7 | ipass.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
8 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
9 | 7, 8 | eqtrid 2786 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑆 = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
10 | 9 | oveqd 7447 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴𝑆𝐵) = (𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)) |
11 | 10 | oveq1d 7445 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶)) |
12 | ipass.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
13 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (·𝑖OLD‘𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
14 | 12, 13 | eqtrid 2786 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
15 | 14 | oveqd 7447 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
16 | 11, 15 | eqtrd 2774 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
17 | 14 | oveqd 7447 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
18 | 17 | oveq2d 7446 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴 · (𝐵𝑃𝐶)) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
19 | 16, 18 | eqeq12d 2750 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)) ↔ ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)))) |
20 | 6, 19 | imbi12d 344 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))))) |
21 | eqid 2734 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
22 | eqid 2734 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
23 | eqid 2734 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
24 | eqid 2734 | . . . 4 ⊢ (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
25 | elimphu 30849 | . . . 4 ⊢ if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) ∈ CPreHilOLD | |
26 | 21, 22, 23, 24, 25 | ipassi 30869 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
27 | 20, 26 | dedth 4588 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))) |
28 | 27 | imp 406 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ifcif 4530 〈cop 4636 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 + caddc 11155 · cmul 11157 abscabs 15269 +𝑣 cpv 30613 BaseSetcba 30614 ·𝑠OLD cns 30615 ·𝑖OLDcdip 30728 CPreHilOLDccphlo 30840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-icc 13390 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-cn 23250 df-cnp 23251 df-t1 23337 df-haus 23338 df-tx 23585 df-hmeo 23778 df-xms 24345 df-ms 24346 df-tms 24347 df-grpo 30521 df-gid 30522 df-ginv 30523 df-gdiv 30524 df-ablo 30573 df-vc 30587 df-nv 30620 df-va 30623 df-ba 30624 df-sm 30625 df-0v 30626 df-vs 30627 df-nmcv 30628 df-ims 30629 df-dip 30729 df-ph 30841 |
This theorem is referenced by: dipassr 30874 dipsubdir 30876 siilem1 30879 hlipass 30941 |
Copyright terms: Public domain | W3C validator |