Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dipass | Structured version Visualization version GIF version |
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipass.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ipass.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipass | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipass.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | fveq2 6663 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
3 | 1, 2 | syl5eq 2805 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
4 | 3 | eleq2d 2837 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
5 | 3 | eleq2d 2837 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐶 ∈ 𝑋 ↔ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
6 | 4, 5 | 3anbi23d 1436 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))))) |
7 | ipass.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
8 | fveq2 6663 | . . . . . . . . 9 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
9 | 7, 8 | syl5eq 2805 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑆 = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
10 | 9 | oveqd 7173 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴𝑆𝐵) = (𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)) |
11 | 10 | oveq1d 7171 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶)) |
12 | ipass.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
13 | fveq2 6663 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (·𝑖OLD‘𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
14 | 12, 13 | syl5eq 2805 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
15 | 14 | oveqd 7173 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
16 | 11, 15 | eqtrd 2793 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
17 | 14 | oveqd 7173 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
18 | 17 | oveq2d 7172 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴 · (𝐵𝑃𝐶)) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
19 | 16, 18 | eqeq12d 2774 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)) ↔ ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)))) |
20 | 6, 19 | imbi12d 348 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))))) |
21 | eqid 2758 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
22 | eqid 2758 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
23 | eqid 2758 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
24 | eqid 2758 | . . . 4 ⊢ (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
25 | elimphu 28717 | . . . 4 ⊢ if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) ∈ CPreHilOLD | |
26 | 21, 22, 23, 24, 25 | ipassi 28737 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
27 | 20, 26 | dedth 4481 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))) |
28 | 27 | imp 410 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ifcif 4423 〈cop 4531 ‘cfv 6340 (class class class)co 7156 ℂcc 10586 + caddc 10591 · cmul 10593 abscabs 14654 +𝑣 cpv 28481 BaseSetcba 28482 ·𝑠OLD cns 28483 ·𝑖OLDcdip 28596 CPreHilOLDccphlo 28708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-map 8424 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-icc 12799 df-fz 12953 df-fzo 13096 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-sum 15104 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-hom 16661 df-cco 16662 df-rest 16768 df-topn 16769 df-0g 16787 df-gsum 16788 df-topgen 16789 df-pt 16790 df-prds 16793 df-xrs 16847 df-qtop 16852 df-imas 16853 df-xps 16855 df-mre 16929 df-mrc 16930 df-acs 16932 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-submnd 18037 df-mulg 18306 df-cntz 18528 df-cmn 18989 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-cnfld 20181 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cld 21733 df-ntr 21734 df-cls 21735 df-cn 21941 df-cnp 21942 df-t1 22028 df-haus 22029 df-tx 22276 df-hmeo 22469 df-xms 23036 df-ms 23037 df-tms 23038 df-grpo 28389 df-gid 28390 df-ginv 28391 df-gdiv 28392 df-ablo 28441 df-vc 28455 df-nv 28488 df-va 28491 df-ba 28492 df-sm 28493 df-0v 28494 df-vs 28495 df-nmcv 28496 df-ims 28497 df-dip 28597 df-ph 28709 |
This theorem is referenced by: dipassr 28742 dipsubdir 28744 siilem1 28747 hlipass 28809 |
Copyright terms: Public domain | W3C validator |