Step | Hyp | Ref
| Expression |
1 | | ipass.1 |
. . . . . . 7
β’ π = (BaseSetβπ) |
2 | | fveq2 6892 |
. . . . . . 7
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (BaseSetβπ) = (BaseSetβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©))) |
3 | 1, 2 | eqtrid 2782 |
. . . . . 6
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β π
= (BaseSetβif(π
β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))) |
4 | 3 | eleq2d 2817 |
. . . . 5
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (π΅ β π β π΅ β (BaseSetβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)))) |
5 | 3 | eleq2d 2817 |
. . . . 5
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (πΆ β π β πΆ β (BaseSetβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)))) |
6 | 4, 5 | 3anbi23d 1437 |
. . . 4
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β ((π΄ β β β§ π΅ β π β§ πΆ β π) β (π΄ β β β§ π΅ β (BaseSetβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)) β§ πΆ
β (BaseSetβif(π
β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))))) |
7 | | ipass.4 |
. . . . . . . . 9
β’ π = (
Β·π OLD βπ) |
8 | | fveq2 6892 |
. . . . . . . . 9
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β ( Β·π OLD βπ) = (
Β·π OLD βif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©))) |
9 | 7, 8 | eqtrid 2782 |
. . . . . . . 8
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β π
= ( Β·π OLD βif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©))) |
10 | 9 | oveqd 7430 |
. . . . . . 7
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (π΄ππ΅) = (π΄( Β·π OLD
βif(π β
CPreHilOLD, π,
β¨β¨ + , Β· β©, absβ©))π΅)) |
11 | 10 | oveq1d 7428 |
. . . . . 6
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β ((π΄ππ΅)ππΆ) = ((π΄( Β·π OLD
βif(π β
CPreHilOLD, π,
β¨β¨ + , Β· β©, absβ©))π΅)ππΆ)) |
12 | | ipass.7 |
. . . . . . . 8
β’ π =
(Β·πOLDβπ) |
13 | | fveq2 6892 |
. . . . . . . 8
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (Β·πOLDβπ) =
(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©))) |
14 | 12, 13 | eqtrid 2782 |
. . . . . . 7
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β π
= (Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©))) |
15 | 14 | oveqd 7430 |
. . . . . 6
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β ((π΄( Β·π OLD
βif(π β
CPreHilOLD, π,
β¨β¨ + , Β· β©, absβ©))π΅)ππΆ) = ((π΄( Β·π OLD
βif(π β
CPreHilOLD, π,
β¨β¨ + , Β· β©, absβ©))π΅)(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ)) |
16 | 11, 15 | eqtrd 2770 |
. . . . 5
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β ((π΄ππ΅)ππΆ) = ((π΄( Β·π OLD
βif(π β
CPreHilOLD, π,
β¨β¨ + , Β· β©, absβ©))π΅)(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ)) |
17 | 14 | oveqd 7430 |
. . . . . 6
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (π΅ππΆ) = (π΅(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ)) |
18 | 17 | oveq2d 7429 |
. . . . 5
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (π΄ Β· (π΅ππΆ)) = (π΄ Β· (π΅(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ))) |
19 | 16, 18 | eqeq12d 2746 |
. . . 4
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (((π΄ππ΅)ππΆ) = (π΄ Β· (π΅ππΆ)) β ((π΄( Β·π OLD
βif(π β
CPreHilOLD, π,
β¨β¨ + , Β· β©, absβ©))π΅)(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ) = (π΄ Β· (π΅(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ)))) |
20 | 6, 19 | imbi12d 343 |
. . 3
β’ (π = if(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©) β (((π΄ β β β§ π΅ β π β§ πΆ β π) β ((π΄ππ΅)ππΆ) = (π΄ Β· (π΅ππΆ))) β ((π΄ β β β§ π΅ β (BaseSetβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)) β§ πΆ
β (BaseSetβif(π
β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))) β ((π΄(
Β·π OLD βif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©))π΅)(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ) = (π΄ Β· (π΅(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ))))) |
21 | | eqid 2730 |
. . . 4
β’
(BaseSetβif(π
β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©)) = (BaseSetβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)) |
22 | | eqid 2730 |
. . . 4
β’ (
+π£ βif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)) = ( +π£ βif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)) |
23 | | eqid 2730 |
. . . 4
β’ (
Β·π OLD βif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)) = ( Β·π OLD βif(π β CPreHilOLD,
π, β¨β¨ + ,
Β· β©, absβ©)) |
24 | | eqid 2730 |
. . . 4
β’
(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©)) = (Β·πOLDβif(π β CPreHilOLD,
π, β¨β¨ + ,
Β· β©, absβ©)) |
25 | | elimphu 30339 |
. . . 4
β’ if(π β CPreHilOLD,
π, β¨β¨ + ,
Β· β©, absβ©) β CPreHilOLD |
26 | 21, 22, 23, 24, 25 | ipassi 30359 |
. . 3
β’ ((π΄ β β β§ π΅ β (BaseSetβif(π β CPreHilOLD,
π, β¨β¨ + ,
Β· β©, absβ©)) β§ πΆ β (BaseSetβif(π β CPreHilOLD, π, β¨β¨ + , Β·
β©, absβ©))) β ((π΄( Β·π OLD
βif(π β
CPreHilOLD, π,
β¨β¨ + , Β· β©, absβ©))π΅)(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ) = (π΄ Β· (π΅(Β·πOLDβif(π β CPreHilOLD, π, β¨β¨ + , Β· β©,
absβ©))πΆ))) |
27 | 20, 26 | dedth 4587 |
. 2
β’ (π β CPreHilOLD
β ((π΄ β β
β§ π΅ β π β§ πΆ β π) β ((π΄ππ΅)ππΆ) = (π΄ Β· (π΅ππΆ)))) |
28 | 27 | imp 405 |
1
β’ ((π β CPreHilOLD
β§ (π΄ β β
β§ π΅ β π β§ πΆ β π)) β ((π΄ππ΅)ππΆ) = (π΄ Β· (π΅ππΆ))) |