MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipass Structured version   Visualization version   GIF version

Theorem dipass 28555
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipass.1 𝑋 = (BaseSet‘𝑈)
ipass.4 𝑆 = ( ·𝑠OLD𝑈)
ipass.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipass ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))

Proof of Theorem dipass
StepHypRef Expression
1 ipass.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 fveq2 6669 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
31, 2syl5eq 2873 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
43eleq2d 2903 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐵𝑋𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
53eleq2d 2903 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐶𝑋𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
64, 53anbi23d 1432 . . . 4 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
7 ipass.4 . . . . . . . . 9 𝑆 = ( ·𝑠OLD𝑈)
8 fveq2 6669 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ( ·𝑠OLD𝑈) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
97, 8syl5eq 2873 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑆 = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
109oveqd 7167 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝑆𝐵) = (𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵))
1110oveq1d 7165 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)𝑃𝐶))
12 ipass.7 . . . . . . . 8 𝑃 = (·𝑖OLD𝑈)
13 fveq2 6669 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (·𝑖OLD𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1412, 13syl5eq 2873 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1514oveqd 7167 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1611, 15eqtrd 2861 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1714oveqd 7167 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1817oveq2d 7166 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴 · (𝐵𝑃𝐶)) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))
1916, 18eqeq12d 2842 . . . 4 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)) ↔ ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))))
206, 19imbi12d 346 . . 3 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))))
21 eqid 2826 . . . 4 (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
22 eqid 2826 . . . 4 ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
23 eqid 2826 . . . 4 ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
24 eqid 2826 . . . 4 (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
25 elimphu 28531 . . . 4 if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CPreHilOLD
2621, 22, 23, 24, 25ipassi 28551 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))
2720, 26dedth 4526 . 2 (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))))
2827imp 407 1 ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  ifcif 4470  cop 4570  cfv 6354  (class class class)co 7150  cc 10529   + caddc 10534   · cmul 10536  abscabs 14588   +𝑣 cpv 28295  BaseSetcba 28296   ·𝑠OLD cns 28297  ·𝑖OLDcdip 28410  CPreHilOLDccphlo 28522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-icc 12740  df-fz 12888  df-fzo 13029  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-cn 21770  df-cnp 21771  df-t1 21857  df-haus 21858  df-tx 22105  df-hmeo 22298  df-xms 22864  df-ms 22865  df-tms 22866  df-grpo 28203  df-gid 28204  df-ginv 28205  df-gdiv 28206  df-ablo 28255  df-vc 28269  df-nv 28302  df-va 28305  df-ba 28306  df-sm 28307  df-0v 28308  df-vs 28309  df-nmcv 28310  df-ims 28311  df-dip 28411  df-ph 28523
This theorem is referenced by:  dipassr  28556  dipsubdir  28558  siilem1  28561  hlipass  28623
  Copyright terms: Public domain W3C validator