Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dipass | Structured version Visualization version GIF version |
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipass.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ipass.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipass | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipass.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | fveq2 6774 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
3 | 1, 2 | eqtrid 2790 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
4 | 3 | eleq2d 2824 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
5 | 3 | eleq2d 2824 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐶 ∈ 𝑋 ↔ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
6 | 4, 5 | 3anbi23d 1438 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))))) |
7 | ipass.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
8 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
9 | 7, 8 | eqtrid 2790 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑆 = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
10 | 9 | oveqd 7292 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴𝑆𝐵) = (𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)) |
11 | 10 | oveq1d 7290 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶)) |
12 | ipass.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
13 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (·𝑖OLD‘𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
14 | 12, 13 | eqtrid 2790 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
15 | 14 | oveqd 7292 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
16 | 11, 15 | eqtrd 2778 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
17 | 14 | oveqd 7292 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
18 | 17 | oveq2d 7291 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴 · (𝐵𝑃𝐶)) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
19 | 16, 18 | eqeq12d 2754 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)) ↔ ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)))) |
20 | 6, 19 | imbi12d 345 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))))) |
21 | eqid 2738 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
22 | eqid 2738 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
23 | eqid 2738 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
24 | eqid 2738 | . . . 4 ⊢ (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
25 | elimphu 29183 | . . . 4 ⊢ if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) ∈ CPreHilOLD | |
26 | 21, 22, 23, 24, 25 | ipassi 29203 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
27 | 20, 26 | dedth 4517 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))) |
28 | 27 | imp 407 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ifcif 4459 〈cop 4567 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 + caddc 10874 · cmul 10876 abscabs 14945 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 ·𝑖OLDcdip 29062 CPreHilOLDccphlo 29174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-cn 22378 df-cnp 22379 df-t1 22465 df-haus 22466 df-tx 22713 df-hmeo 22906 df-xms 23473 df-ms 23474 df-tms 23475 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-dip 29063 df-ph 29175 |
This theorem is referenced by: dipassr 29208 dipsubdir 29210 siilem1 29213 hlipass 29275 |
Copyright terms: Public domain | W3C validator |