| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dipass | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ipass.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ipass.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| Ref | Expression |
|---|---|
| dipass | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipass.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | fveq2 6861 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 3 | 1, 2 | eqtrid 2777 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 4 | 3 | eleq2d 2815 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 5 | 3 | eleq2d 2815 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐶 ∈ 𝑋 ↔ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 6 | 4, 5 | 3anbi23d 1441 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))))) |
| 7 | ipass.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 8 | fveq2 6861 | . . . . . . . . 9 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 9 | 7, 8 | eqtrid 2777 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑆 = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 10 | 9 | oveqd 7407 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴𝑆𝐵) = (𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)) |
| 11 | 10 | oveq1d 7405 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶)) |
| 12 | ipass.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 13 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (·𝑖OLD‘𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 14 | 12, 13 | eqtrid 2777 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 15 | 14 | oveqd 7407 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
| 16 | 11, 15 | eqtrd 2765 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
| 17 | 14 | oveqd 7407 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)) |
| 18 | 17 | oveq2d 7406 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐴 · (𝐵𝑃𝐶)) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
| 19 | 16, 18 | eqeq12d 2746 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)) ↔ ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶)))) |
| 20 | 6, 19 | imbi12d 344 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))))) |
| 21 | eqid 2730 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 22 | eqid 2730 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 23 | eqid 2730 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 24 | eqid 2730 | . . . 4 ⊢ (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 25 | elimphu 30757 | . . . 4 ⊢ if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) ∈ CPreHilOLD | |
| 26 | 21, 22, 23, 24, 25 | ipassi 30777 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))) → ((𝐴( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶) = (𝐴 · (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))𝐶))) |
| 27 | 20, 26 | dedth 4550 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))) |
| 28 | 27 | imp 406 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4491 〈cop 4598 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 + caddc 11078 · cmul 11080 abscabs 15207 +𝑣 cpv 30521 BaseSetcba 30522 ·𝑠OLD cns 30523 ·𝑖OLDcdip 30636 CPreHilOLDccphlo 30748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-cn 23121 df-cnp 23122 df-t1 23208 df-haus 23209 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-vs 30535 df-nmcv 30536 df-ims 30537 df-dip 30637 df-ph 30749 |
| This theorem is referenced by: dipassr 30782 dipsubdir 30784 siilem1 30787 hlipass 30849 |
| Copyright terms: Public domain | W3C validator |