MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smcn Structured version   Visualization version   GIF version

Theorem smcn 29192
Description: Scalar multiplication is jointly continuous in both arguments. (Contributed by NM, 16-Jun-2009.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
smcn.c 𝐶 = (IndMet‘𝑈)
smcn.j 𝐽 = (MetOpen‘𝐶)
smcn.s 𝑆 = ( ·𝑠OLD𝑈)
smcn.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
smcn (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽))

Proof of Theorem smcn
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smcn.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
2 fveq2 6811 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ( ·𝑠OLD𝑈) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
31, 2eqtrid 2788 . . 3 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑆 = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
4 smcn.j . . . . . 6 𝐽 = (MetOpen‘𝐶)
5 smcn.c . . . . . . . 8 𝐶 = (IndMet‘𝑈)
6 fveq2 6811 . . . . . . . 8 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (IndMet‘𝑈) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
75, 6eqtrid 2788 . . . . . . 7 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐶 = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
87fveq2d 6815 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (MetOpen‘𝐶) = (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
94, 8eqtrid 2788 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐽 = (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
109oveq2d 7332 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐾 ×t 𝐽) = (𝐾 ×t (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
1110, 9oveq12d 7334 . . 3 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐾 ×t 𝐽) Cn 𝐽) = ((𝐾 ×t (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))) Cn (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
123, 11eleq12d 2831 . 2 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∈ ((𝐾 ×t (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))) Cn (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))))
13 eqid 2736 . . 3 (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
14 eqid 2736 . . 3 (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) = (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
15 eqid 2736 . . 3 ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
16 smcn.k . . 3 𝐾 = (TopOpen‘ℂfld)
17 eqid 2736 . . 3 (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
18 eqid 2736 . . 3 (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
19 elimnvu 29178 . . 3 if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
20 eqid 2736 . . 3 (1 / (1 + (((((normCV‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑦) + (abs‘𝑥)) + 1) / 𝑟))) = (1 / (1 + (((((normCV‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
2113, 14, 15, 16, 17, 18, 19, 20smcnlem 29191 . 2 ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∈ ((𝐾 ×t (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))) Cn (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
2212, 21dedth 4528 1 (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  ifcif 4470  cop 4576  cfv 6465  (class class class)co 7316  1c1 10951   + caddc 10953   · cmul 10955   / cdiv 11711  abscabs 15021  TopOpenctopn 17206  MetOpencmopn 20667  fldccnfld 20677   Cn ccn 22455   ×t ctx 22791  NrmCVeccnv 29078  BaseSetcba 29080   ·𝑠OLD cns 29081  normCVcnmcv 29084  IndMetcims 29085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028  ax-addf 11029  ax-mulf 11030
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-of 7574  df-om 7759  df-1st 7877  df-2nd 7878  df-supp 8026  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-2o 8346  df-er 8547  df-map 8666  df-ixp 8735  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-fsupp 9205  df-fi 9246  df-sup 9277  df-inf 9278  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-7 12120  df-8 12121  df-9 12122  df-n0 12313  df-z 12399  df-dec 12517  df-uz 12662  df-q 12768  df-rp 12810  df-xneg 12927  df-xadd 12928  df-xmul 12929  df-icc 13165  df-fz 13319  df-fzo 13462  df-seq 13801  df-exp 13862  df-hash 14124  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-struct 16922  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-ress 17016  df-plusg 17049  df-mulr 17050  df-starv 17051  df-sca 17052  df-vsca 17053  df-ip 17054  df-tset 17055  df-ple 17056  df-ds 17058  df-unif 17059  df-hom 17060  df-cco 17061  df-rest 17207  df-topn 17208  df-0g 17226  df-gsum 17227  df-topgen 17228  df-pt 17229  df-prds 17232  df-xrs 17287  df-qtop 17292  df-imas 17293  df-xps 17295  df-mre 17369  df-mrc 17370  df-acs 17372  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-submnd 18505  df-mulg 18774  df-cntz 18996  df-cmn 19460  df-psmet 20669  df-xmet 20670  df-met 20671  df-bl 20672  df-mopn 20673  df-cnfld 20678  df-top 22123  df-topon 22140  df-topsp 22162  df-bases 22176  df-cn 22458  df-cnp 22459  df-tx 22793  df-hmeo 22986  df-xms 23553  df-tms 23555  df-grpo 28987  df-gid 28988  df-ginv 28989  df-gdiv 28990  df-ablo 29039  df-vc 29053  df-nv 29086  df-va 29089  df-ba 29090  df-sm 29091  df-0v 29092  df-vs 29093  df-nmcv 29094  df-ims 29095
This theorem is referenced by:  vmcn  29193  dipcn  29214  ipasslem7  29330
  Copyright terms: Public domain W3C validator