| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smcn | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication is jointly continuous in both arguments. (Contributed by NM, 16-Jun-2009.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| smcn.c | ⊢ 𝐶 = (IndMet‘𝑈) |
| smcn.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
| smcn.s | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| smcn.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| smcn | ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smcn.s | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 2 | fveq2 6830 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 3 | 1, 2 | eqtrid 2780 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑆 = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 4 | smcn.j | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐶) | |
| 5 | smcn.c | . . . . . . . 8 ⊢ 𝐶 = (IndMet‘𝑈) | |
| 6 | fveq2 6830 | . . . . . . . 8 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (IndMet‘𝑈) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 7 | 5, 6 | eqtrid 2780 | . . . . . . 7 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → 𝐶 = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 8 | 7 | fveq2d 6834 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (MetOpen‘𝐶) = (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 9 | 4, 8 | eqtrid 2780 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → 𝐽 = (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 10 | 9 | oveq2d 7370 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (𝐾 ×t 𝐽) = (𝐾 ×t (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))))) |
| 11 | 10, 9 | oveq12d 7372 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → ((𝐾 ×t 𝐽) Cn 𝐽) = ((𝐾 ×t (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) Cn (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))))) |
| 12 | 3, 11 | eleq12d 2827 | . 2 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) ∈ ((𝐾 ×t (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) Cn (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))))) |
| 13 | eqid 2733 | . . 3 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 14 | eqid 2733 | . . 3 ⊢ (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) = (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 15 | eqid 2733 | . . 3 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 16 | smcn.k | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 17 | eqid 2733 | . . 3 ⊢ (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 18 | eqid 2733 | . . 3 ⊢ (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 19 | elimnvu 30668 | . . 3 ⊢ if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) ∈ NrmCVec | |
| 20 | eqid 2733 | . . 3 ⊢ (1 / (1 + (((((normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))‘𝑦) + (abs‘𝑥)) + 1) / 𝑟))) = (1 / (1 + (((((normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))‘𝑦) + (abs‘𝑥)) + 1) / 𝑟))) | |
| 21 | 13, 14, 15, 16, 17, 18, 19, 20 | smcnlem 30681 | . 2 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) ∈ ((𝐾 ×t (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) Cn (MetOpen‘(IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 22 | 12, 21 | dedth 4535 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ifcif 4476 〈cop 4583 ‘cfv 6488 (class class class)co 7354 1c1 11016 + caddc 11018 · cmul 11020 / cdiv 11783 abscabs 15145 TopOpenctopn 17329 MetOpencmopn 21285 ℂfldccnfld 21295 Cn ccn 23142 ×t ctx 23478 NrmCVeccnv 30568 BaseSetcba 30570 ·𝑠OLD cns 30571 normCVcnmcv 30574 IndMetcims 30575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 ax-mulf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cn 23145 df-cnp 23146 df-tx 23480 df-hmeo 23673 df-xms 24238 df-tms 24240 df-grpo 30477 df-gid 30478 df-ginv 30479 df-gdiv 30480 df-ablo 30529 df-vc 30543 df-nv 30576 df-va 30579 df-ba 30580 df-sm 30581 df-0v 30582 df-vs 30583 df-nmcv 30584 df-ims 30585 |
| This theorem is referenced by: vmcn 30683 dipcn 30704 ipasslem7 30820 |
| Copyright terms: Public domain | W3C validator |