MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocn Structured version   Visualization version   GIF version

Theorem blocn 30788
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocn.8 𝐶 = (IndMet‘𝑈)
blocn.d 𝐷 = (IndMet‘𝑊)
blocn.j 𝐽 = (MetOpen‘𝐶)
blocn.k 𝐾 = (MetOpen‘𝐷)
blocn.5 𝐵 = (𝑈 BLnOp 𝑊)
blocn.u 𝑈 ∈ NrmCVec
blocn.w 𝑊 ∈ NrmCVec
blocn.4 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
blocn (𝑇𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵))

Proof of Theorem blocn
StepHypRef Expression
1 eleq1 2816 . . 3 (𝑇 = if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾)))
2 eleq1 2816 . . 3 (𝑇 = if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) → (𝑇𝐵 ↔ if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵))
31, 2bibi12d 345 . 2 (𝑇 = if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) → ((𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵) ↔ (if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾) ↔ if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵)))
4 blocn.8 . . 3 𝐶 = (IndMet‘𝑈)
5 blocn.d . . 3 𝐷 = (IndMet‘𝑊)
6 blocn.j . . 3 𝐽 = (MetOpen‘𝐶)
7 blocn.k . . 3 𝐾 = (MetOpen‘𝐷)
8 blocn.4 . . 3 𝐿 = (𝑈 LnOp 𝑊)
9 blocn.5 . . 3 𝐵 = (𝑈 BLnOp 𝑊)
10 blocn.u . . 3 𝑈 ∈ NrmCVec
11 blocn.w . . 3 𝑊 ∈ NrmCVec
12 eqid 2729 . . . . . 6 (𝑈 0op 𝑊) = (𝑈 0op 𝑊)
1312, 80lno 30771 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐿)
1410, 11, 13mp2an 692 . . . 4 (𝑈 0op 𝑊) ∈ 𝐿
1514elimel 4554 . . 3 if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐿
164, 5, 6, 7, 8, 9, 10, 11, 15blocni 30786 . 2 (if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾) ↔ if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵)
173, 16dedth 4543 1 (𝑇𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  ifcif 4484  cfv 6500  (class class class)co 7370  MetOpencmopn 21288   Cn ccn 23146  NrmCVeccnv 30565  IndMetcims 30572   LnOp clno 30721   BLnOp cblo 30723   0op c0o 30724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126  ax-mulf 11127
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-er 8649  df-map 8779  df-en 8897  df-dom 8898  df-sdom 8899  df-sup 9370  df-inf 9371  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-n0 12422  df-z 12509  df-uz 12773  df-q 12887  df-rp 12931  df-xneg 13051  df-xadd 13052  df-xmul 13053  df-seq 13946  df-exp 14006  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-topgen 17384  df-psmet 21290  df-xmet 21291  df-met 21292  df-bl 21293  df-mopn 21294  df-top 22816  df-topon 22833  df-bases 22868  df-cn 23149  df-cnp 23150  df-grpo 30474  df-gid 30475  df-ginv 30476  df-gdiv 30477  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-vs 30580  df-nmcv 30581  df-ims 30582  df-lno 30725  df-nmoo 30726  df-blo 30727  df-0o 30728
This theorem is referenced by:  blocn2  30789
  Copyright terms: Public domain W3C validator