| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blocn | Structured version Visualization version GIF version | ||
| Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| blocn.8 | ⊢ 𝐶 = (IndMet‘𝑈) |
| blocn.d | ⊢ 𝐷 = (IndMet‘𝑊) |
| blocn.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
| blocn.k | ⊢ 𝐾 = (MetOpen‘𝐷) |
| blocn.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| blocn.u | ⊢ 𝑈 ∈ NrmCVec |
| blocn.w | ⊢ 𝑊 ∈ NrmCVec |
| blocn.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| blocn | ⊢ (𝑇 ∈ 𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾))) | |
| 2 | eleq1 2816 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) → (𝑇 ∈ 𝐵 ↔ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵)) | |
| 3 | 1, 2 | bibi12d 345 | . 2 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) → ((𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵) ↔ (if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾) ↔ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵))) |
| 4 | blocn.8 | . . 3 ⊢ 𝐶 = (IndMet‘𝑈) | |
| 5 | blocn.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑊) | |
| 6 | blocn.j | . . 3 ⊢ 𝐽 = (MetOpen‘𝐶) | |
| 7 | blocn.k | . . 3 ⊢ 𝐾 = (MetOpen‘𝐷) | |
| 8 | blocn.4 | . . 3 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | blocn.5 | . . 3 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 10 | blocn.u | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
| 11 | blocn.w | . . 3 ⊢ 𝑊 ∈ NrmCVec | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (𝑈 0op 𝑊) = (𝑈 0op 𝑊) | |
| 13 | 12, 8 | 0lno 30769 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐿) |
| 14 | 10, 11, 13 | mp2an 692 | . . . 4 ⊢ (𝑈 0op 𝑊) ∈ 𝐿 |
| 15 | 14 | elimel 4554 | . . 3 ⊢ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐿 |
| 16 | 4, 5, 6, 7, 8, 9, 10, 11, 15 | blocni 30784 | . 2 ⊢ (if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾) ↔ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵) |
| 17 | 3, 16 | dedth 4543 | 1 ⊢ (𝑇 ∈ 𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ifcif 4484 ‘cfv 6499 (class class class)co 7369 MetOpencmopn 21286 Cn ccn 23144 NrmCVeccnv 30563 IndMetcims 30570 LnOp clno 30719 BLnOp cblo 30721 0op c0o 30722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-topgen 17382 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-top 22814 df-topon 22831 df-bases 22866 df-cn 23147 df-cnp 23148 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-lno 30723 df-nmoo 30724 df-blo 30725 df-0o 30726 |
| This theorem is referenced by: blocn2 30787 |
| Copyright terms: Public domain | W3C validator |