MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocn Structured version   Visualization version   GIF version

Theorem blocn 30826
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocn.8 𝐶 = (IndMet‘𝑈)
blocn.d 𝐷 = (IndMet‘𝑊)
blocn.j 𝐽 = (MetOpen‘𝐶)
blocn.k 𝐾 = (MetOpen‘𝐷)
blocn.5 𝐵 = (𝑈 BLnOp 𝑊)
blocn.u 𝑈 ∈ NrmCVec
blocn.w 𝑊 ∈ NrmCVec
blocn.4 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
blocn (𝑇𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵))

Proof of Theorem blocn
StepHypRef Expression
1 eleq1 2829 . . 3 (𝑇 = if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾)))
2 eleq1 2829 . . 3 (𝑇 = if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) → (𝑇𝐵 ↔ if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵))
31, 2bibi12d 345 . 2 (𝑇 = if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) → ((𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵) ↔ (if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾) ↔ if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵)))
4 blocn.8 . . 3 𝐶 = (IndMet‘𝑈)
5 blocn.d . . 3 𝐷 = (IndMet‘𝑊)
6 blocn.j . . 3 𝐽 = (MetOpen‘𝐶)
7 blocn.k . . 3 𝐾 = (MetOpen‘𝐷)
8 blocn.4 . . 3 𝐿 = (𝑈 LnOp 𝑊)
9 blocn.5 . . 3 𝐵 = (𝑈 BLnOp 𝑊)
10 blocn.u . . 3 𝑈 ∈ NrmCVec
11 blocn.w . . 3 𝑊 ∈ NrmCVec
12 eqid 2737 . . . . . 6 (𝑈 0op 𝑊) = (𝑈 0op 𝑊)
1312, 80lno 30809 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐿)
1410, 11, 13mp2an 692 . . . 4 (𝑈 0op 𝑊) ∈ 𝐿
1514elimel 4595 . . 3 if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐿
164, 5, 6, 7, 8, 9, 10, 11, 15blocni 30824 . 2 (if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾) ↔ if(𝑇𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵)
173, 16dedth 4584 1 (𝑇𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  ifcif 4525  cfv 6561  (class class class)co 7431  MetOpencmopn 21354   Cn ccn 23232  NrmCVeccnv 30603  IndMetcims 30610   LnOp clno 30759   BLnOp cblo 30761   0op c0o 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-cnp 23236  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-lno 30763  df-nmoo 30764  df-blo 30765  df-0o 30766
This theorem is referenced by:  blocn2  30827
  Copyright terms: Public domain W3C validator