Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmblolbi | Structured version Visualization version GIF version |
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmblolbi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmblolbi.4 | ⊢ 𝐿 = (normCV‘𝑈) |
nmblolbi.5 | ⊢ 𝑀 = (normCV‘𝑊) |
nmblolbi.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmblolbi.7 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
nmblolbi.u | ⊢ 𝑈 ∈ NrmCVec |
nmblolbi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmblolbi | ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6765 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑇‘𝐴) = (if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) | |
2 | 1 | fveq2d 6770 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑀‘(𝑇‘𝐴)) = (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴))) |
3 | fveq2 6766 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑁‘𝑇) = (𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)))) | |
4 | 3 | oveq1d 7282 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑁‘𝑇) · (𝐿‘𝐴)) = ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))) |
5 | 2, 4 | breq12d 5086 | . . . 4 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴)) ↔ (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴)))) |
6 | 5 | imbi2d 341 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) ↔ (𝐴 ∈ 𝑋 → (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))))) |
7 | nmblolbi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | nmblolbi.4 | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
9 | nmblolbi.5 | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
10 | nmblolbi.6 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
11 | nmblolbi.7 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
12 | nmblolbi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
13 | nmblolbi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
14 | eqid 2738 | . . . . . . 7 ⊢ (𝑈 0op 𝑊) = (𝑈 0op 𝑊) | |
15 | 14, 11 | 0blo 29162 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐵) |
16 | 12, 13, 15 | mp2an 689 | . . . . 5 ⊢ (𝑈 0op 𝑊) ∈ 𝐵 |
17 | 16 | elimel 4528 | . . . 4 ⊢ if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵 |
18 | 7, 8, 9, 10, 11, 12, 13, 17 | nmblolbii 29169 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))) |
19 | 6, 18 | dedth 4517 | . 2 ⊢ (𝑇 ∈ 𝐵 → (𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴)))) |
20 | 19 | imp 407 | 1 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 · cmul 10886 ≤ cle 11020 NrmCVeccnv 28954 BaseSetcba 28956 normCVcnmcv 28960 normOpOLD cnmoo 29111 BLnOp cblo 29112 0op c0o 29113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-sup 9188 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-seq 13732 df-exp 13793 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-grpo 28863 df-gid 28864 df-ginv 28865 df-ablo 28915 df-vc 28929 df-nv 28962 df-va 28965 df-ba 28966 df-sm 28967 df-0v 28968 df-nmcv 28970 df-lno 29114 df-nmoo 29115 df-blo 29116 df-0o 29117 |
This theorem is referenced by: isblo3i 29171 blometi 29173 ubthlem3 29242 htthlem 29287 |
Copyright terms: Public domain | W3C validator |