![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmblolbi | Structured version Visualization version GIF version |
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmblolbi.1 | β’ π = (BaseSetβπ) |
nmblolbi.4 | β’ πΏ = (normCVβπ) |
nmblolbi.5 | β’ π = (normCVβπ) |
nmblolbi.6 | β’ π = (π normOpOLD π) |
nmblolbi.7 | β’ π΅ = (π BLnOp π) |
nmblolbi.u | β’ π β NrmCVec |
nmblolbi.w | β’ π β NrmCVec |
Ref | Expression |
---|---|
nmblolbi | β’ ((π β π΅ β§ π΄ β π) β (πβ(πβπ΄)) β€ ((πβπ) Β· (πΏβπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6889 | . . . . . 6 β’ (π = if(π β π΅, π, (π 0op π)) β (πβπ΄) = (if(π β π΅, π, (π 0op π))βπ΄)) | |
2 | 1 | fveq2d 6894 | . . . . 5 β’ (π = if(π β π΅, π, (π 0op π)) β (πβ(πβπ΄)) = (πβ(if(π β π΅, π, (π 0op π))βπ΄))) |
3 | fveq2 6890 | . . . . . 6 β’ (π = if(π β π΅, π, (π 0op π)) β (πβπ) = (πβif(π β π΅, π, (π 0op π)))) | |
4 | 3 | oveq1d 7426 | . . . . 5 β’ (π = if(π β π΅, π, (π 0op π)) β ((πβπ) Β· (πΏβπ΄)) = ((πβif(π β π΅, π, (π 0op π))) Β· (πΏβπ΄))) |
5 | 2, 4 | breq12d 5160 | . . . 4 β’ (π = if(π β π΅, π, (π 0op π)) β ((πβ(πβπ΄)) β€ ((πβπ) Β· (πΏβπ΄)) β (πβ(if(π β π΅, π, (π 0op π))βπ΄)) β€ ((πβif(π β π΅, π, (π 0op π))) Β· (πΏβπ΄)))) |
6 | 5 | imbi2d 339 | . . 3 β’ (π = if(π β π΅, π, (π 0op π)) β ((π΄ β π β (πβ(πβπ΄)) β€ ((πβπ) Β· (πΏβπ΄))) β (π΄ β π β (πβ(if(π β π΅, π, (π 0op π))βπ΄)) β€ ((πβif(π β π΅, π, (π 0op π))) Β· (πΏβπ΄))))) |
7 | nmblolbi.1 | . . . 4 β’ π = (BaseSetβπ) | |
8 | nmblolbi.4 | . . . 4 β’ πΏ = (normCVβπ) | |
9 | nmblolbi.5 | . . . 4 β’ π = (normCVβπ) | |
10 | nmblolbi.6 | . . . 4 β’ π = (π normOpOLD π) | |
11 | nmblolbi.7 | . . . 4 β’ π΅ = (π BLnOp π) | |
12 | nmblolbi.u | . . . 4 β’ π β NrmCVec | |
13 | nmblolbi.w | . . . 4 β’ π β NrmCVec | |
14 | eqid 2730 | . . . . . . 7 β’ (π 0op π) = (π 0op π) | |
15 | 14, 11 | 0blo 30312 | . . . . . 6 β’ ((π β NrmCVec β§ π β NrmCVec) β (π 0op π) β π΅) |
16 | 12, 13, 15 | mp2an 688 | . . . . 5 β’ (π 0op π) β π΅ |
17 | 16 | elimel 4596 | . . . 4 β’ if(π β π΅, π, (π 0op π)) β π΅ |
18 | 7, 8, 9, 10, 11, 12, 13, 17 | nmblolbii 30319 | . . 3 β’ (π΄ β π β (πβ(if(π β π΅, π, (π 0op π))βπ΄)) β€ ((πβif(π β π΅, π, (π 0op π))) Β· (πΏβπ΄))) |
19 | 6, 18 | dedth 4585 | . 2 β’ (π β π΅ β (π΄ β π β (πβ(πβπ΄)) β€ ((πβπ) Β· (πΏβπ΄)))) |
20 | 19 | imp 405 | 1 β’ ((π β π΅ β§ π΄ β π) β (πβ(πβπ΄)) β€ ((πβπ) Β· (πΏβπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 ifcif 4527 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Β· cmul 11117 β€ cle 11253 NrmCVeccnv 30104 BaseSetcba 30106 normCVcnmcv 30110 normOpOLD cnmoo 30261 BLnOp cblo 30262 0op c0o 30263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-grpo 30013 df-gid 30014 df-ginv 30015 df-ablo 30065 df-vc 30079 df-nv 30112 df-va 30115 df-ba 30116 df-sm 30117 df-0v 30118 df-nmcv 30120 df-lno 30264 df-nmoo 30265 df-blo 30266 df-0o 30267 |
This theorem is referenced by: isblo3i 30321 blometi 30323 ubthlem3 30392 htthlem 30437 |
Copyright terms: Public domain | W3C validator |