| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmblolbi | Structured version Visualization version GIF version | ||
| Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmblolbi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmblolbi.4 | ⊢ 𝐿 = (normCV‘𝑈) |
| nmblolbi.5 | ⊢ 𝑀 = (normCV‘𝑊) |
| nmblolbi.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmblolbi.7 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| nmblolbi.u | ⊢ 𝑈 ∈ NrmCVec |
| nmblolbi.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| nmblolbi | ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6875 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑇‘𝐴) = (if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) | |
| 2 | 1 | fveq2d 6880 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑀‘(𝑇‘𝐴)) = (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴))) |
| 3 | fveq2 6876 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑁‘𝑇) = (𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)))) | |
| 4 | 3 | oveq1d 7420 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑁‘𝑇) · (𝐿‘𝐴)) = ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))) |
| 5 | 2, 4 | breq12d 5132 | . . . 4 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴)) ↔ (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴)))) |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) ↔ (𝐴 ∈ 𝑋 → (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))))) |
| 7 | nmblolbi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | nmblolbi.4 | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 9 | nmblolbi.5 | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
| 10 | nmblolbi.6 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 11 | nmblolbi.7 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 12 | nmblolbi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
| 13 | nmblolbi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
| 14 | eqid 2735 | . . . . . . 7 ⊢ (𝑈 0op 𝑊) = (𝑈 0op 𝑊) | |
| 15 | 14, 11 | 0blo 30773 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐵) |
| 16 | 12, 13, 15 | mp2an 692 | . . . . 5 ⊢ (𝑈 0op 𝑊) ∈ 𝐵 |
| 17 | 16 | elimel 4570 | . . . 4 ⊢ if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵 |
| 18 | 7, 8, 9, 10, 11, 12, 13, 17 | nmblolbii 30780 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))) |
| 19 | 6, 18 | dedth 4559 | . 2 ⊢ (𝑇 ∈ 𝐵 → (𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴)))) |
| 20 | 19 | imp 406 | 1 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 · cmul 11134 ≤ cle 11270 NrmCVeccnv 30565 BaseSetcba 30567 normCVcnmcv 30571 normOpOLD cnmoo 30722 BLnOp cblo 30723 0op c0o 30724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-grpo 30474 df-gid 30475 df-ginv 30476 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-nmcv 30581 df-lno 30725 df-nmoo 30726 df-blo 30727 df-0o 30728 |
| This theorem is referenced by: isblo3i 30782 blometi 30784 ubthlem3 30853 htthlem 30898 |
| Copyright terms: Public domain | W3C validator |