Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmblolbi | Structured version Visualization version GIF version |
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmblolbi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmblolbi.4 | ⊢ 𝐿 = (normCV‘𝑈) |
nmblolbi.5 | ⊢ 𝑀 = (normCV‘𝑊) |
nmblolbi.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmblolbi.7 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
nmblolbi.u | ⊢ 𝑈 ∈ NrmCVec |
nmblolbi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmblolbi | ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6755 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑇‘𝐴) = (if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) | |
2 | 1 | fveq2d 6760 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑀‘(𝑇‘𝐴)) = (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴))) |
3 | fveq2 6756 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑁‘𝑇) = (𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)))) | |
4 | 3 | oveq1d 7270 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑁‘𝑇) · (𝐿‘𝐴)) = ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))) |
5 | 2, 4 | breq12d 5083 | . . . 4 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴)) ↔ (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴)))) |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) ↔ (𝐴 ∈ 𝑋 → (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))))) |
7 | nmblolbi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | nmblolbi.4 | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
9 | nmblolbi.5 | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
10 | nmblolbi.6 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
11 | nmblolbi.7 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
12 | nmblolbi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
13 | nmblolbi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
14 | eqid 2738 | . . . . . . 7 ⊢ (𝑈 0op 𝑊) = (𝑈 0op 𝑊) | |
15 | 14, 11 | 0blo 29055 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐵) |
16 | 12, 13, 15 | mp2an 688 | . . . . 5 ⊢ (𝑈 0op 𝑊) ∈ 𝐵 |
17 | 16 | elimel 4525 | . . . 4 ⊢ if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵 |
18 | 7, 8, 9, 10, 11, 12, 13, 17 | nmblolbii 29062 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))) |
19 | 6, 18 | dedth 4514 | . 2 ⊢ (𝑇 ∈ 𝐵 → (𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴)))) |
20 | 19 | imp 406 | 1 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 · cmul 10807 ≤ cle 10941 NrmCVeccnv 28847 BaseSetcba 28849 normCVcnmcv 28853 normOpOLD cnmoo 29004 BLnOp cblo 29005 0op c0o 29006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-lno 29007 df-nmoo 29008 df-blo 29009 df-0o 29010 |
This theorem is referenced by: isblo3i 29064 blometi 29066 ubthlem3 29135 htthlem 29180 |
Copyright terms: Public domain | W3C validator |