MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmblolbi Structured version   Visualization version   GIF version

Theorem nmblolbi 30780
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmblolbi.1 𝑋 = (BaseSet‘𝑈)
nmblolbi.4 𝐿 = (normCV𝑈)
nmblolbi.5 𝑀 = (normCV𝑊)
nmblolbi.6 𝑁 = (𝑈 normOpOLD 𝑊)
nmblolbi.7 𝐵 = (𝑈 BLnOp 𝑊)
nmblolbi.u 𝑈 ∈ NrmCVec
nmblolbi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmblolbi ((𝑇𝐵𝐴𝑋) → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))

Proof of Theorem nmblolbi
StepHypRef Expression
1 fveq1 6821 . . . . . 6 (𝑇 = if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑇𝐴) = (if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴))
21fveq2d 6826 . . . . 5 (𝑇 = if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑀‘(𝑇𝐴)) = (𝑀‘(if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)))
3 fveq2 6822 . . . . . 6 (𝑇 = if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑁𝑇) = (𝑁‘if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))))
43oveq1d 7361 . . . . 5 (𝑇 = if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑁𝑇) · (𝐿𝐴)) = ((𝑁‘if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿𝐴)))
52, 4breq12d 5102 . . . 4 (𝑇 = if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)) ↔ (𝑀‘(if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿𝐴))))
65imbi2d 340 . . 3 (𝑇 = if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))) ↔ (𝐴𝑋 → (𝑀‘(if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿𝐴)))))
7 nmblolbi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
8 nmblolbi.4 . . . 4 𝐿 = (normCV𝑈)
9 nmblolbi.5 . . . 4 𝑀 = (normCV𝑊)
10 nmblolbi.6 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
11 nmblolbi.7 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
12 nmblolbi.u . . . 4 𝑈 ∈ NrmCVec
13 nmblolbi.w . . . 4 𝑊 ∈ NrmCVec
14 eqid 2731 . . . . . . 7 (𝑈 0op 𝑊) = (𝑈 0op 𝑊)
1514, 110blo 30772 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐵)
1612, 13, 15mp2an 692 . . . . 5 (𝑈 0op 𝑊) ∈ 𝐵
1716elimel 4542 . . . 4 if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵
187, 8, 9, 10, 11, 12, 13, 17nmblolbii 30779 . . 3 (𝐴𝑋 → (𝑀‘(if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿𝐴)))
196, 18dedth 4531 . 2 (𝑇𝐵 → (𝐴𝑋 → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴))))
2019imp 406 1 ((𝑇𝐵𝐴𝑋) → (𝑀‘(𝑇𝐴)) ≤ ((𝑁𝑇) · (𝐿𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4472   class class class wbr 5089  cfv 6481  (class class class)co 7346   · cmul 11011  cle 11147  NrmCVeccnv 30564  BaseSetcba 30566  normCVcnmcv 30570   normOpOLD cnmoo 30721   BLnOp cblo 30722   0op c0o 30723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580  df-lno 30724  df-nmoo 30725  df-blo 30726  df-0o 30727
This theorem is referenced by:  isblo3i  30781  blometi  30783  ubthlem3  30852  htthlem  30897
  Copyright terms: Public domain W3C validator