HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz1 Structured version   Visualization version   GIF version

Theorem riesz1 31181
Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 31182. For the continuous linear functional version, see riesz3i 31178 and riesz4 31180. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
riesz1 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem riesz1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lnfncnbd 31173 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn𝑇) ∈ ℝ))
2 elin 3960 . . . . 5 (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn))
3 fveq1 6877 . . . . . . . 8 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇𝑥) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥))
43eqeq1d 2733 . . . . . . 7 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)))
54rexralbidv 3219 . . . . . 6 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)))
6 inss1 4224 . . . . . . . 8 (LinFn ∩ ContFn) ⊆ LinFn
7 0lnfn 31101 . . . . . . . . . 10 ( ℋ × {0}) ∈ LinFn
8 0cnfn 31096 . . . . . . . . . 10 ( ℋ × {0}) ∈ ContFn
9 elin 3960 . . . . . . . . . 10 (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn))
107, 8, 9mpbir2an 709 . . . . . . . . 9 ( ℋ × {0}) ∈ (LinFn ∩ ContFn)
1110elimel 4591 . . . . . . . 8 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn)
126, 11sselii 3975 . . . . . . 7 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn
13 inss2 4225 . . . . . . . 8 (LinFn ∩ ContFn) ⊆ ContFn
1413, 11sselii 3975 . . . . . . 7 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn
1512, 14riesz3i 31178 . . . . . 6 𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)
165, 15dedth 4580 . . . . 5 (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦))
172, 16sylbir 234 . . . 4 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦))
1817ex 413 . . 3 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
19 normcl 30241 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2019adantl 482 . . . . . 6 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (norm𝑦) ∈ ℝ)
21 fveq2 6878 . . . . . . . . . . 11 ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) = (abs‘(𝑥 ·ih 𝑦)))
2221adantl 482 . . . . . . . . . 10 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇𝑥)) = (abs‘(𝑥 ·ih 𝑦)))
23 bcs 30297 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑥) · (norm𝑦)))
24 normcl 30241 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
25 recn 11182 . . . . . . . . . . . . . . 15 ((norm𝑥) ∈ ℝ → (norm𝑥) ∈ ℂ)
26 recn 11182 . . . . . . . . . . . . . . 15 ((norm𝑦) ∈ ℝ → (norm𝑦) ∈ ℂ)
27 mulcom 11178 . . . . . . . . . . . . . . 15 (((norm𝑥) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
2825, 26, 27syl2an 596 . . . . . . . . . . . . . 14 (((norm𝑥) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
2924, 19, 28syl2an 596 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
3023, 29breqtrd 5167 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3130adantll 712 . . . . . . . . . . 11 (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3231adantr 481 . . . . . . . . . 10 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3322, 32eqbrtrd 5163 . . . . . . . . 9 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥)))
3433ex 413 . . . . . . . 8 (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3534an32s 650 . . . . . . 7 (((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3635ralimdva 3166 . . . . . 6 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
37 oveq1 7400 . . . . . . . . 9 (𝑧 = (norm𝑦) → (𝑧 · (norm𝑥)) = ((norm𝑦) · (norm𝑥)))
3837breq2d 5153 . . . . . . . 8 (𝑧 = (norm𝑦) → ((abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)) ↔ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3938ralbidv 3176 . . . . . . 7 (𝑧 = (norm𝑦) → (∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)) ↔ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
4039rspcev 3609 . . . . . 6 (((norm𝑦) ∈ ℝ ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)))
4120, 36, 40syl6an 682 . . . . 5 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
4241rexlimdva 3154 . . . 4 (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
43 lnfncon 31172 . . . 4 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
4442, 43sylibrd 258 . . 3 (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → 𝑇 ∈ ContFn))
4518, 44impbid 211 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
461, 45bitr3d 280 1 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  cin 3943  ifcif 4522  {csn 4622   class class class wbr 5141   × cxp 5667  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  0cc0 11092   · cmul 11097  cle 11231  abscabs 15163  chba 30035   ·ih csp 30038  normcno 30039  normfncnmf 30067  ContFnccnfn 30069  LinFnclf 30070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cc 10412  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172  ax-hilex 30115  ax-hfvadd 30116  ax-hvcom 30117  ax-hvass 30118  ax-hv0cl 30119  ax-hvaddid 30120  ax-hfvmul 30121  ax-hvmulid 30122  ax-hvmulass 30123  ax-hvdistr1 30124  ax-hvdistr2 30125  ax-hvmul0 30126  ax-hfi 30195  ax-his1 30198  ax-his2 30199  ax-his3 30200  ax-his4 30201  ax-hcompl 30318
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-oadd 8452  df-omul 8453  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-acn 9919  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13467  df-fzo 13610  df-fl 13739  df-seq 13949  df-exp 14010  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-rlim 15415  df-sum 15615  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-fbas 20875  df-fg 20876  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cld 22452  df-ntr 22453  df-cls 22454  df-nei 22531  df-cn 22660  df-cnp 22661  df-lm 22662  df-t1 22747  df-haus 22748  df-tx 22995  df-hmeo 23188  df-fil 23279  df-fm 23371  df-flim 23372  df-flf 23373  df-xms 23755  df-ms 23756  df-tms 23757  df-cfil 24701  df-cau 24702  df-cmet 24703  df-grpo 29609  df-gid 29610  df-ginv 29611  df-gdiv 29612  df-ablo 29661  df-vc 29675  df-nv 29708  df-va 29711  df-ba 29712  df-sm 29713  df-0v 29714  df-vs 29715  df-nmcv 29716  df-ims 29717  df-dip 29817  df-ssp 29838  df-ph 29929  df-cbn 29979  df-hnorm 30084  df-hba 30085  df-hvsub 30087  df-hlim 30088  df-hcau 30089  df-sh 30323  df-ch 30337  df-oc 30368  df-ch0 30369  df-nmfn 30961  df-nlfn 30962  df-cnfn 30963  df-lnfn 30964
This theorem is referenced by:  rnbra  31223
  Copyright terms: Public domain W3C validator