HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz1 Structured version   Visualization version   GIF version

Theorem riesz1 29775
Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 29776. For the continuous linear functional version, see riesz3i 29772 and riesz4 29774. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
riesz1 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem riesz1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lnfncnbd 29767 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn𝑇) ∈ ℝ))
2 elin 4173 . . . . 5 (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn))
3 fveq1 6668 . . . . . . . 8 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇𝑥) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥))
43eqeq1d 2828 . . . . . . 7 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)))
54rexralbidv 3306 . . . . . 6 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)))
6 inss1 4209 . . . . . . . 8 (LinFn ∩ ContFn) ⊆ LinFn
7 0lnfn 29695 . . . . . . . . . 10 ( ℋ × {0}) ∈ LinFn
8 0cnfn 29690 . . . . . . . . . 10 ( ℋ × {0}) ∈ ContFn
9 elin 4173 . . . . . . . . . 10 (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn))
107, 8, 9mpbir2an 707 . . . . . . . . 9 ( ℋ × {0}) ∈ (LinFn ∩ ContFn)
1110elimel 4537 . . . . . . . 8 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn)
126, 11sselii 3968 . . . . . . 7 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn
13 inss2 4210 . . . . . . . 8 (LinFn ∩ ContFn) ⊆ ContFn
1413, 11sselii 3968 . . . . . . 7 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn
1512, 14riesz3i 29772 . . . . . 6 𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)
165, 15dedth 4526 . . . . 5 (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦))
172, 16sylbir 236 . . . 4 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦))
1817ex 413 . . 3 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
19 normcl 28835 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2019adantl 482 . . . . . 6 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (norm𝑦) ∈ ℝ)
21 fveq2 6669 . . . . . . . . . . 11 ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) = (abs‘(𝑥 ·ih 𝑦)))
2221adantl 482 . . . . . . . . . 10 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇𝑥)) = (abs‘(𝑥 ·ih 𝑦)))
23 bcs 28891 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑥) · (norm𝑦)))
24 normcl 28835 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
25 recn 10621 . . . . . . . . . . . . . . 15 ((norm𝑥) ∈ ℝ → (norm𝑥) ∈ ℂ)
26 recn 10621 . . . . . . . . . . . . . . 15 ((norm𝑦) ∈ ℝ → (norm𝑦) ∈ ℂ)
27 mulcom 10617 . . . . . . . . . . . . . . 15 (((norm𝑥) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
2825, 26, 27syl2an 595 . . . . . . . . . . . . . 14 (((norm𝑥) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
2924, 19, 28syl2an 595 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
3023, 29breqtrd 5089 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3130adantll 710 . . . . . . . . . . 11 (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3231adantr 481 . . . . . . . . . 10 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3322, 32eqbrtrd 5085 . . . . . . . . 9 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥)))
3433ex 413 . . . . . . . 8 (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3534an32s 648 . . . . . . 7 (((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3635ralimdva 3182 . . . . . 6 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
37 oveq1 7157 . . . . . . . . 9 (𝑧 = (norm𝑦) → (𝑧 · (norm𝑥)) = ((norm𝑦) · (norm𝑥)))
3837breq2d 5075 . . . . . . . 8 (𝑧 = (norm𝑦) → ((abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)) ↔ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3938ralbidv 3202 . . . . . . 7 (𝑧 = (norm𝑦) → (∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)) ↔ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
4039rspcev 3627 . . . . . 6 (((norm𝑦) ∈ ℝ ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)))
4120, 36, 40syl6an 680 . . . . 5 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
4241rexlimdva 3289 . . . 4 (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
43 lnfncon 29766 . . . 4 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
4442, 43sylibrd 260 . . 3 (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → 𝑇 ∈ ContFn))
4518, 44impbid 213 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
461, 45bitr3d 282 1 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  wrex 3144  cin 3939  ifcif 4470  {csn 4564   class class class wbr 5063   × cxp 5552  cfv 6354  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   · cmul 10536  cle 10670  abscabs 14588  chba 28629   ·ih csp 28632  normcno 28633  normfncnmf 28661  ContFnccnfn 28663  LinFnclf 28664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611  ax-hilex 28709  ax-hfvadd 28710  ax-hvcom 28711  ax-hvass 28712  ax-hv0cl 28713  ax-hvaddid 28714  ax-hfvmul 28715  ax-hvmulid 28716  ax-hvmulass 28717  ax-hvdistr1 28718  ax-hvdistr2 28719  ax-hvmul0 28720  ax-hfi 28789  ax-his1 28792  ax-his2 28793  ax-his3 28794  ax-his4 28795  ax-hcompl 28912
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-omul 8103  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-cn 21770  df-cnp 21771  df-lm 21772  df-t1 21857  df-haus 21858  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-xms 22864  df-ms 22865  df-tms 22866  df-cfil 23792  df-cau 23793  df-cmet 23794  df-grpo 28203  df-gid 28204  df-ginv 28205  df-gdiv 28206  df-ablo 28255  df-vc 28269  df-nv 28302  df-va 28305  df-ba 28306  df-sm 28307  df-0v 28308  df-vs 28309  df-nmcv 28310  df-ims 28311  df-dip 28411  df-ssp 28432  df-ph 28523  df-cbn 28573  df-hnorm 28678  df-hba 28679  df-hvsub 28681  df-hlim 28682  df-hcau 28683  df-sh 28917  df-ch 28931  df-oc 28962  df-ch0 28963  df-nmfn 29555  df-nlfn 29556  df-cnfn 29557  df-lnfn 29558
This theorem is referenced by:  rnbra  29817
  Copyright terms: Public domain W3C validator