HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz1 Structured version   Visualization version   GIF version

Theorem riesz1 30427
Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 30428. For the continuous linear functional version, see riesz3i 30424 and riesz4 30426. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
riesz1 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem riesz1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lnfncnbd 30419 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn𝑇) ∈ ℝ))
2 elin 3903 . . . . 5 (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn))
3 fveq1 6773 . . . . . . . 8 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇𝑥) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥))
43eqeq1d 2740 . . . . . . 7 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)))
54rexralbidv 3230 . . . . . 6 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)))
6 inss1 4162 . . . . . . . 8 (LinFn ∩ ContFn) ⊆ LinFn
7 0lnfn 30347 . . . . . . . . . 10 ( ℋ × {0}) ∈ LinFn
8 0cnfn 30342 . . . . . . . . . 10 ( ℋ × {0}) ∈ ContFn
9 elin 3903 . . . . . . . . . 10 (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn))
107, 8, 9mpbir2an 708 . . . . . . . . 9 ( ℋ × {0}) ∈ (LinFn ∩ ContFn)
1110elimel 4528 . . . . . . . 8 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn)
126, 11sselii 3918 . . . . . . 7 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn
13 inss2 4163 . . . . . . . 8 (LinFn ∩ ContFn) ⊆ ContFn
1413, 11sselii 3918 . . . . . . 7 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn
1512, 14riesz3i 30424 . . . . . 6 𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)
165, 15dedth 4517 . . . . 5 (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦))
172, 16sylbir 234 . . . 4 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦))
1817ex 413 . . 3 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
19 normcl 29487 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2019adantl 482 . . . . . 6 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (norm𝑦) ∈ ℝ)
21 fveq2 6774 . . . . . . . . . . 11 ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) = (abs‘(𝑥 ·ih 𝑦)))
2221adantl 482 . . . . . . . . . 10 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇𝑥)) = (abs‘(𝑥 ·ih 𝑦)))
23 bcs 29543 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑥) · (norm𝑦)))
24 normcl 29487 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
25 recn 10961 . . . . . . . . . . . . . . 15 ((norm𝑥) ∈ ℝ → (norm𝑥) ∈ ℂ)
26 recn 10961 . . . . . . . . . . . . . . 15 ((norm𝑦) ∈ ℝ → (norm𝑦) ∈ ℂ)
27 mulcom 10957 . . . . . . . . . . . . . . 15 (((norm𝑥) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
2825, 26, 27syl2an 596 . . . . . . . . . . . . . 14 (((norm𝑥) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
2924, 19, 28syl2an 596 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
3023, 29breqtrd 5100 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3130adantll 711 . . . . . . . . . . 11 (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3231adantr 481 . . . . . . . . . 10 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3322, 32eqbrtrd 5096 . . . . . . . . 9 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥)))
3433ex 413 . . . . . . . 8 (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3534an32s 649 . . . . . . 7 (((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3635ralimdva 3108 . . . . . 6 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
37 oveq1 7282 . . . . . . . . 9 (𝑧 = (norm𝑦) → (𝑧 · (norm𝑥)) = ((norm𝑦) · (norm𝑥)))
3837breq2d 5086 . . . . . . . 8 (𝑧 = (norm𝑦) → ((abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)) ↔ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3938ralbidv 3112 . . . . . . 7 (𝑧 = (norm𝑦) → (∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)) ↔ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
4039rspcev 3561 . . . . . 6 (((norm𝑦) ∈ ℝ ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)))
4120, 36, 40syl6an 681 . . . . 5 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
4241rexlimdva 3213 . . . 4 (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
43 lnfncon 30418 . . . 4 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
4442, 43sylibrd 258 . . 3 (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → 𝑇 ∈ ContFn))
4518, 44impbid 211 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
461, 45bitr3d 280 1 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cin 3886  ifcif 4459  {csn 4561   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876  cle 11010  abscabs 14945  chba 29281   ·ih csp 29284  normcno 29285  normfncnmf 29313  ContFnccnfn 29315  LinFnclf 29316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-t1 22465  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-nmfn 30207  df-nlfn 30208  df-cnfn 30209  df-lnfn 30210
This theorem is referenced by:  rnbra  30469
  Copyright terms: Public domain W3C validator