HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz1 Structured version   Visualization version   GIF version

Theorem riesz1 32084
Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 32085. For the continuous linear functional version, see riesz3i 32081 and riesz4 32083. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
riesz1 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem riesz1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lnfncnbd 32076 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn𝑇) ∈ ℝ))
2 elin 3967 . . . . 5 (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn))
3 fveq1 6905 . . . . . . . 8 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇𝑥) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥))
43eqeq1d 2739 . . . . . . 7 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)))
54rexralbidv 3223 . . . . . 6 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)))
6 inss1 4237 . . . . . . . 8 (LinFn ∩ ContFn) ⊆ LinFn
7 0lnfn 32004 . . . . . . . . . 10 ( ℋ × {0}) ∈ LinFn
8 0cnfn 31999 . . . . . . . . . 10 ( ℋ × {0}) ∈ ContFn
9 elin 3967 . . . . . . . . . 10 (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn))
107, 8, 9mpbir2an 711 . . . . . . . . 9 ( ℋ × {0}) ∈ (LinFn ∩ ContFn)
1110elimel 4595 . . . . . . . 8 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn)
126, 11sselii 3980 . . . . . . 7 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn
13 inss2 4238 . . . . . . . 8 (LinFn ∩ ContFn) ⊆ ContFn
1413, 11sselii 3980 . . . . . . 7 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn
1512, 14riesz3i 32081 . . . . . 6 𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦)
165, 15dedth 4584 . . . . 5 (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦))
172, 16sylbir 235 . . . 4 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦))
1817ex 412 . . 3 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
19 normcl 31144 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2019adantl 481 . . . . . 6 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (norm𝑦) ∈ ℝ)
21 fveq2 6906 . . . . . . . . . . 11 ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) = (abs‘(𝑥 ·ih 𝑦)))
2221adantl 481 . . . . . . . . . 10 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇𝑥)) = (abs‘(𝑥 ·ih 𝑦)))
23 bcs 31200 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑥) · (norm𝑦)))
24 normcl 31144 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
25 recn 11245 . . . . . . . . . . . . . . 15 ((norm𝑥) ∈ ℝ → (norm𝑥) ∈ ℂ)
26 recn 11245 . . . . . . . . . . . . . . 15 ((norm𝑦) ∈ ℝ → (norm𝑦) ∈ ℂ)
27 mulcom 11241 . . . . . . . . . . . . . . 15 (((norm𝑥) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
2825, 26, 27syl2an 596 . . . . . . . . . . . . . 14 (((norm𝑥) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
2924, 19, 28syl2an 596 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝑥) · (norm𝑦)) = ((norm𝑦) · (norm𝑥)))
3023, 29breqtrd 5169 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3130adantll 714 . . . . . . . . . . 11 (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3231adantr 480 . . . . . . . . . 10 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((norm𝑦) · (norm𝑥)))
3322, 32eqbrtrd 5165 . . . . . . . . 9 ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥)))
3433ex 412 . . . . . . . 8 (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3534an32s 652 . . . . . . 7 (((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3635ralimdva 3167 . . . . . 6 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
37 oveq1 7438 . . . . . . . . 9 (𝑧 = (norm𝑦) → (𝑧 · (norm𝑥)) = ((norm𝑦) · (norm𝑥)))
3837breq2d 5155 . . . . . . . 8 (𝑧 = (norm𝑦) → ((abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)) ↔ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
3938ralbidv 3178 . . . . . . 7 (𝑧 = (norm𝑦) → (∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)) ↔ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))))
4039rspcev 3622 . . . . . 6 (((norm𝑦) ∈ ℝ ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ ((norm𝑦) · (norm𝑥))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥)))
4120, 36, 40syl6an 684 . . . . 5 ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
4241rexlimdva 3155 . . . 4 (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
43 lnfncon 32075 . . . 4 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇𝑥)) ≤ (𝑧 · (norm𝑥))))
4442, 43sylibrd 259 . . 3 (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦) → 𝑇 ∈ ContFn))
4518, 44impbid 212 . 2 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
461, 45bitr3d 281 1 (𝑇 ∈ LinFn → ((normfn𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇𝑥) = (𝑥 ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cin 3950  ifcif 4525  {csn 4626   class class class wbr 5143   × cxp 5683  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   · cmul 11160  cle 11296  abscabs 15273  chba 30938   ·ih csp 30941  normcno 30942  normfncnmf 30970  ContFnccnfn 30972  LinFnclf 30973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-t1 23322  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-nmfn 31864  df-nlfn 31865  df-cnfn 31866  df-lnfn 31867
This theorem is referenced by:  rnbra  32126
  Copyright terms: Public domain W3C validator