![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > riesz1 | Structured version Visualization version GIF version |
Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 31008. For the continuous linear functional version, see riesz3i 31004 and riesz4 31006. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
riesz1 | ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnfncnbd 30999 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) | |
2 | elin 3926 | . . . . 5 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn)) | |
3 | fveq1 6841 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇‘𝑥) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥)) | |
4 | 3 | eqeq1d 2738 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦))) |
5 | 4 | rexralbidv 3214 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦))) |
6 | inss1 4188 | . . . . . . . 8 ⊢ (LinFn ∩ ContFn) ⊆ LinFn | |
7 | 0lnfn 30927 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ LinFn | |
8 | 0cnfn 30922 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ ContFn | |
9 | elin 3926 | . . . . . . . . . 10 ⊢ (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn)) | |
10 | 7, 8, 9 | mpbir2an 709 | . . . . . . . . 9 ⊢ ( ℋ × {0}) ∈ (LinFn ∩ ContFn) |
11 | 10 | elimel 4555 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) |
12 | 6, 11 | sselii 3941 | . . . . . . 7 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn |
13 | inss2 4189 | . . . . . . . 8 ⊢ (LinFn ∩ ContFn) ⊆ ContFn | |
14 | 13, 11 | sselii 3941 | . . . . . . 7 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn |
15 | 12, 14 | riesz3i 31004 | . . . . . 6 ⊢ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦) |
16 | 5, 15 | dedth 4544 | . . . . 5 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) |
17 | 2, 16 | sylbir 234 | . . . 4 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) |
18 | 17 | ex 413 | . . 3 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
19 | normcl 30067 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘𝑦) ∈ ℝ) | |
20 | 19 | adantl 482 | . . . . . 6 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (normℎ‘𝑦) ∈ ℝ) |
21 | fveq2 6842 | . . . . . . . . . . 11 ⊢ ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) = (abs‘(𝑥 ·ih 𝑦))) | |
22 | 21 | adantl 482 | . . . . . . . . . 10 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇‘𝑥)) = (abs‘(𝑥 ·ih 𝑦))) |
23 | bcs 30123 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑥) · (normℎ‘𝑦))) | |
24 | normcl 30067 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℋ → (normℎ‘𝑥) ∈ ℝ) | |
25 | recn 11141 | . . . . . . . . . . . . . . 15 ⊢ ((normℎ‘𝑥) ∈ ℝ → (normℎ‘𝑥) ∈ ℂ) | |
26 | recn 11141 | . . . . . . . . . . . . . . 15 ⊢ ((normℎ‘𝑦) ∈ ℝ → (normℎ‘𝑦) ∈ ℂ) | |
27 | mulcom 11137 | . . . . . . . . . . . . . . 15 ⊢ (((normℎ‘𝑥) ∈ ℂ ∧ (normℎ‘𝑦) ∈ ℂ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) | |
28 | 25, 26, 27 | syl2an 596 | . . . . . . . . . . . . . 14 ⊢ (((normℎ‘𝑥) ∈ ℝ ∧ (normℎ‘𝑦) ∈ ℝ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) |
29 | 24, 19, 28 | syl2an 596 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) |
30 | 23, 29 | breqtrd 5131 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
31 | 30 | adantll 712 | . . . . . . . . . . 11 ⊢ (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
32 | 31 | adantr 481 | . . . . . . . . . 10 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
33 | 22, 32 | eqbrtrd 5127 | . . . . . . . . 9 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
34 | 33 | ex 413 | . . . . . . . 8 ⊢ (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
35 | 34 | an32s 650 | . . . . . . 7 ⊢ (((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
36 | 35 | ralimdva 3164 | . . . . . 6 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
37 | oveq1 7364 | . . . . . . . . 9 ⊢ (𝑧 = (normℎ‘𝑦) → (𝑧 · (normℎ‘𝑥)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) | |
38 | 37 | breq2d 5117 | . . . . . . . 8 ⊢ (𝑧 = (normℎ‘𝑦) → ((abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)) ↔ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
39 | 38 | ralbidv 3174 | . . . . . . 7 ⊢ (𝑧 = (normℎ‘𝑦) → (∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)) ↔ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
40 | 39 | rspcev 3581 | . . . . . 6 ⊢ (((normℎ‘𝑦) ∈ ℝ ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥))) |
41 | 20, 36, 40 | syl6an 682 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) |
42 | 41 | rexlimdva 3152 | . . . 4 ⊢ (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) |
43 | lnfncon 30998 | . . . 4 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) | |
44 | 42, 43 | sylibrd 258 | . . 3 ⊢ (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → 𝑇 ∈ ContFn)) |
45 | 18, 44 | impbid 211 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
46 | 1, 45 | bitr3d 280 | 1 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 ∩ cin 3909 ifcif 4486 {csn 4586 class class class wbr 5105 × cxp 5631 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ℝcr 11050 0cc0 11051 · cmul 11056 ≤ cle 11190 abscabs 15119 ℋchba 29861 ·ih csp 29864 normℎcno 29865 normfncnmf 29893 ContFnccnfn 29895 LinFnclf 29896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cc 10371 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 ax-hilex 29941 ax-hfvadd 29942 ax-hvcom 29943 ax-hvass 29944 ax-hv0cl 29945 ax-hvaddid 29946 ax-hfvmul 29947 ax-hvmulid 29948 ax-hvmulass 29949 ax-hvdistr1 29950 ax-hvdistr2 29951 ax-hvmul0 29952 ax-hfi 30021 ax-his1 30024 ax-his2 30025 ax-his3 30026 ax-his4 30027 ax-hcompl 30144 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-omul 8417 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-rlim 15371 df-sum 15571 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-cn 22578 df-cnp 22579 df-lm 22580 df-t1 22665 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cfil 24619 df-cau 24620 df-cmet 24621 df-grpo 29435 df-gid 29436 df-ginv 29437 df-gdiv 29438 df-ablo 29487 df-vc 29501 df-nv 29534 df-va 29537 df-ba 29538 df-sm 29539 df-0v 29540 df-vs 29541 df-nmcv 29542 df-ims 29543 df-dip 29643 df-ssp 29664 df-ph 29755 df-cbn 29805 df-hnorm 29910 df-hba 29911 df-hvsub 29913 df-hlim 29914 df-hcau 29915 df-sh 30149 df-ch 30163 df-oc 30194 df-ch0 30195 df-nmfn 30787 df-nlfn 30788 df-cnfn 30789 df-lnfn 30790 |
This theorem is referenced by: rnbra 31049 |
Copyright terms: Public domain | W3C validator |