Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > riesz1 | Structured version Visualization version GIF version |
Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 30329. For the continuous linear functional version, see riesz3i 30325 and riesz4 30327. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
riesz1 | ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnfncnbd 30320 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) | |
2 | elin 3899 | . . . . 5 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn)) | |
3 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇‘𝑥) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥)) | |
4 | 3 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦))) |
5 | 4 | rexralbidv 3229 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦))) |
6 | inss1 4159 | . . . . . . . 8 ⊢ (LinFn ∩ ContFn) ⊆ LinFn | |
7 | 0lnfn 30248 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ LinFn | |
8 | 0cnfn 30243 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ ContFn | |
9 | elin 3899 | . . . . . . . . . 10 ⊢ (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn)) | |
10 | 7, 8, 9 | mpbir2an 707 | . . . . . . . . 9 ⊢ ( ℋ × {0}) ∈ (LinFn ∩ ContFn) |
11 | 10 | elimel 4525 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) |
12 | 6, 11 | sselii 3914 | . . . . . . 7 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn |
13 | inss2 4160 | . . . . . . . 8 ⊢ (LinFn ∩ ContFn) ⊆ ContFn | |
14 | 13, 11 | sselii 3914 | . . . . . . 7 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn |
15 | 12, 14 | riesz3i 30325 | . . . . . 6 ⊢ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦) |
16 | 5, 15 | dedth 4514 | . . . . 5 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) |
17 | 2, 16 | sylbir 234 | . . . 4 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) |
18 | 17 | ex 412 | . . 3 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
19 | normcl 29388 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘𝑦) ∈ ℝ) | |
20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (normℎ‘𝑦) ∈ ℝ) |
21 | fveq2 6756 | . . . . . . . . . . 11 ⊢ ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) = (abs‘(𝑥 ·ih 𝑦))) | |
22 | 21 | adantl 481 | . . . . . . . . . 10 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇‘𝑥)) = (abs‘(𝑥 ·ih 𝑦))) |
23 | bcs 29444 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑥) · (normℎ‘𝑦))) | |
24 | normcl 29388 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℋ → (normℎ‘𝑥) ∈ ℝ) | |
25 | recn 10892 | . . . . . . . . . . . . . . 15 ⊢ ((normℎ‘𝑥) ∈ ℝ → (normℎ‘𝑥) ∈ ℂ) | |
26 | recn 10892 | . . . . . . . . . . . . . . 15 ⊢ ((normℎ‘𝑦) ∈ ℝ → (normℎ‘𝑦) ∈ ℂ) | |
27 | mulcom 10888 | . . . . . . . . . . . . . . 15 ⊢ (((normℎ‘𝑥) ∈ ℂ ∧ (normℎ‘𝑦) ∈ ℂ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) | |
28 | 25, 26, 27 | syl2an 595 | . . . . . . . . . . . . . 14 ⊢ (((normℎ‘𝑥) ∈ ℝ ∧ (normℎ‘𝑦) ∈ ℝ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) |
29 | 24, 19, 28 | syl2an 595 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) |
30 | 23, 29 | breqtrd 5096 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
31 | 30 | adantll 710 | . . . . . . . . . . 11 ⊢ (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
32 | 31 | adantr 480 | . . . . . . . . . 10 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
33 | 22, 32 | eqbrtrd 5092 | . . . . . . . . 9 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
34 | 33 | ex 412 | . . . . . . . 8 ⊢ (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
35 | 34 | an32s 648 | . . . . . . 7 ⊢ (((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
36 | 35 | ralimdva 3102 | . . . . . 6 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
37 | oveq1 7262 | . . . . . . . . 9 ⊢ (𝑧 = (normℎ‘𝑦) → (𝑧 · (normℎ‘𝑥)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) | |
38 | 37 | breq2d 5082 | . . . . . . . 8 ⊢ (𝑧 = (normℎ‘𝑦) → ((abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)) ↔ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
39 | 38 | ralbidv 3120 | . . . . . . 7 ⊢ (𝑧 = (normℎ‘𝑦) → (∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)) ↔ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
40 | 39 | rspcev 3552 | . . . . . 6 ⊢ (((normℎ‘𝑦) ∈ ℝ ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥))) |
41 | 20, 36, 40 | syl6an 680 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) |
42 | 41 | rexlimdva 3212 | . . . 4 ⊢ (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) |
43 | lnfncon 30319 | . . . 4 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) | |
44 | 42, 43 | sylibrd 258 | . . 3 ⊢ (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → 𝑇 ∈ ContFn)) |
45 | 18, 44 | impbid 211 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
46 | 1, 45 | bitr3d 280 | 1 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ifcif 4456 {csn 4558 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 · cmul 10807 ≤ cle 10941 abscabs 14873 ℋchba 29182 ·ih csp 29185 normℎcno 29186 normfncnmf 29214 ContFnccnfn 29216 LinFnclf 29217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-lm 22288 df-t1 22373 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ssp 28985 df-ph 29076 df-cbn 29126 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 df-nmfn 30108 df-nlfn 30109 df-cnfn 30110 df-lnfn 30111 |
This theorem is referenced by: rnbra 30370 |
Copyright terms: Public domain | W3C validator |