Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > riesz1 | Structured version Visualization version GIF version |
Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 30001. For the continuous linear functional version, see riesz3i 29997 and riesz4 29999. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
riesz1 | ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnfncnbd 29992 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) | |
2 | elin 3859 | . . . . 5 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn)) | |
3 | fveq1 6673 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇‘𝑥) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥)) | |
4 | 3 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦))) |
5 | 4 | rexralbidv 3211 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦))) |
6 | inss1 4119 | . . . . . . . 8 ⊢ (LinFn ∩ ContFn) ⊆ LinFn | |
7 | 0lnfn 29920 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ LinFn | |
8 | 0cnfn 29915 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ ContFn | |
9 | elin 3859 | . . . . . . . . . 10 ⊢ (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn)) | |
10 | 7, 8, 9 | mpbir2an 711 | . . . . . . . . 9 ⊢ ( ℋ × {0}) ∈ (LinFn ∩ ContFn) |
11 | 10 | elimel 4483 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) |
12 | 6, 11 | sselii 3874 | . . . . . . 7 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn |
13 | inss2 4120 | . . . . . . . 8 ⊢ (LinFn ∩ ContFn) ⊆ ContFn | |
14 | 13, 11 | sselii 3874 | . . . . . . 7 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn |
15 | 12, 14 | riesz3i 29997 | . . . . . 6 ⊢ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦) |
16 | 5, 15 | dedth 4472 | . . . . 5 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) |
17 | 2, 16 | sylbir 238 | . . . 4 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) |
18 | 17 | ex 416 | . . 3 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
19 | normcl 29060 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘𝑦) ∈ ℝ) | |
20 | 19 | adantl 485 | . . . . . 6 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (normℎ‘𝑦) ∈ ℝ) |
21 | fveq2 6674 | . . . . . . . . . . 11 ⊢ ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) = (abs‘(𝑥 ·ih 𝑦))) | |
22 | 21 | adantl 485 | . . . . . . . . . 10 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇‘𝑥)) = (abs‘(𝑥 ·ih 𝑦))) |
23 | bcs 29116 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑥) · (normℎ‘𝑦))) | |
24 | normcl 29060 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℋ → (normℎ‘𝑥) ∈ ℝ) | |
25 | recn 10705 | . . . . . . . . . . . . . . 15 ⊢ ((normℎ‘𝑥) ∈ ℝ → (normℎ‘𝑥) ∈ ℂ) | |
26 | recn 10705 | . . . . . . . . . . . . . . 15 ⊢ ((normℎ‘𝑦) ∈ ℝ → (normℎ‘𝑦) ∈ ℂ) | |
27 | mulcom 10701 | . . . . . . . . . . . . . . 15 ⊢ (((normℎ‘𝑥) ∈ ℂ ∧ (normℎ‘𝑦) ∈ ℂ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) | |
28 | 25, 26, 27 | syl2an 599 | . . . . . . . . . . . . . 14 ⊢ (((normℎ‘𝑥) ∈ ℝ ∧ (normℎ‘𝑦) ∈ ℝ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) |
29 | 24, 19, 28 | syl2an 599 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) |
30 | 23, 29 | breqtrd 5056 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
31 | 30 | adantll 714 | . . . . . . . . . . 11 ⊢ (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
32 | 31 | adantr 484 | . . . . . . . . . 10 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
33 | 22, 32 | eqbrtrd 5052 | . . . . . . . . 9 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
34 | 33 | ex 416 | . . . . . . . 8 ⊢ (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
35 | 34 | an32s 652 | . . . . . . 7 ⊢ (((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
36 | 35 | ralimdva 3091 | . . . . . 6 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
37 | oveq1 7177 | . . . . . . . . 9 ⊢ (𝑧 = (normℎ‘𝑦) → (𝑧 · (normℎ‘𝑥)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) | |
38 | 37 | breq2d 5042 | . . . . . . . 8 ⊢ (𝑧 = (normℎ‘𝑦) → ((abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)) ↔ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
39 | 38 | ralbidv 3109 | . . . . . . 7 ⊢ (𝑧 = (normℎ‘𝑦) → (∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)) ↔ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
40 | 39 | rspcev 3526 | . . . . . 6 ⊢ (((normℎ‘𝑦) ∈ ℝ ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥))) |
41 | 20, 36, 40 | syl6an 684 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) |
42 | 41 | rexlimdva 3194 | . . . 4 ⊢ (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) |
43 | lnfncon 29991 | . . . 4 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) | |
44 | 42, 43 | sylibrd 262 | . . 3 ⊢ (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → 𝑇 ∈ ContFn)) |
45 | 18, 44 | impbid 215 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
46 | 1, 45 | bitr3d 284 | 1 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ∃wrex 3054 ∩ cin 3842 ifcif 4414 {csn 4516 class class class wbr 5030 × cxp 5523 ‘cfv 6339 (class class class)co 7170 ℂcc 10613 ℝcr 10614 0cc0 10615 · cmul 10620 ≤ cle 10754 abscabs 14683 ℋchba 28854 ·ih csp 28857 normℎcno 28858 normfncnmf 28886 ContFnccnfn 28888 LinFnclf 28889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cc 9935 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 ax-hilex 28934 ax-hfvadd 28935 ax-hvcom 28936 ax-hvass 28937 ax-hv0cl 28938 ax-hvaddid 28939 ax-hfvmul 28940 ax-hvmulid 28941 ax-hvmulass 28942 ax-hvdistr1 28943 ax-hvdistr2 28944 ax-hvmul0 28945 ax-hfi 29014 ax-his1 29017 ax-his2 29018 ax-his3 29019 ax-his4 29020 ax-hcompl 29137 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-oadd 8135 df-omul 8136 df-er 8320 df-map 8439 df-pm 8440 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-acn 9444 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-fl 13253 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-rlim 14936 df-sum 15136 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-pt 16821 df-prds 16824 df-xrs 16878 df-qtop 16883 df-imas 16884 df-xps 16886 df-mre 16960 df-mrc 16961 df-acs 16963 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-mulg 18343 df-cntz 18565 df-cmn 19026 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-fbas 20214 df-fg 20215 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-nei 21849 df-cn 21978 df-cnp 21979 df-lm 21980 df-t1 22065 df-haus 22066 df-tx 22313 df-hmeo 22506 df-fil 22597 df-fm 22689 df-flim 22690 df-flf 22691 df-xms 23073 df-ms 23074 df-tms 23075 df-cfil 24007 df-cau 24008 df-cmet 24009 df-grpo 28428 df-gid 28429 df-ginv 28430 df-gdiv 28431 df-ablo 28480 df-vc 28494 df-nv 28527 df-va 28530 df-ba 28531 df-sm 28532 df-0v 28533 df-vs 28534 df-nmcv 28535 df-ims 28536 df-dip 28636 df-ssp 28657 df-ph 28748 df-cbn 28798 df-hnorm 28903 df-hba 28904 df-hvsub 28906 df-hlim 28907 df-hcau 28908 df-sh 29142 df-ch 29156 df-oc 29187 df-ch0 29188 df-nmfn 29780 df-nlfn 29781 df-cnfn 29782 df-lnfn 29783 |
This theorem is referenced by: rnbra 30042 |
Copyright terms: Public domain | W3C validator |