| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > riesz1 | Structured version Visualization version GIF version | ||
| Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 32045. For the continuous linear functional version, see riesz3i 32041 and riesz4 32043. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| riesz1 | ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncnbd 32036 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) | |
| 2 | elin 3927 | . . . . 5 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn)) | |
| 3 | fveq1 6839 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇‘𝑥) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥)) | |
| 4 | 3 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦))) |
| 5 | 4 | rexralbidv 3201 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦))) |
| 6 | inss1 4196 | . . . . . . . 8 ⊢ (LinFn ∩ ContFn) ⊆ LinFn | |
| 7 | 0lnfn 31964 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ LinFn | |
| 8 | 0cnfn 31959 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ ContFn | |
| 9 | elin 3927 | . . . . . . . . . 10 ⊢ (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn)) | |
| 10 | 7, 8, 9 | mpbir2an 711 | . . . . . . . . 9 ⊢ ( ℋ × {0}) ∈ (LinFn ∩ ContFn) |
| 11 | 10 | elimel 4554 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) |
| 12 | 6, 11 | sselii 3940 | . . . . . . 7 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn |
| 13 | inss2 4197 | . . . . . . . 8 ⊢ (LinFn ∩ ContFn) ⊆ ContFn | |
| 14 | 13, 11 | sselii 3940 | . . . . . . 7 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn |
| 15 | 12, 14 | riesz3i 32041 | . . . . . 6 ⊢ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝑥) = (𝑥 ·ih 𝑦) |
| 16 | 5, 15 | dedth 4543 | . . . . 5 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) |
| 17 | 2, 16 | sylbir 235 | . . . 4 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) |
| 18 | 17 | ex 412 | . . 3 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn → ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
| 19 | normcl 31104 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘𝑦) ∈ ℝ) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (normℎ‘𝑦) ∈ ℝ) |
| 21 | fveq2 6840 | . . . . . . . . . . 11 ⊢ ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) = (abs‘(𝑥 ·ih 𝑦))) | |
| 22 | 21 | adantl 481 | . . . . . . . . . 10 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇‘𝑥)) = (abs‘(𝑥 ·ih 𝑦))) |
| 23 | bcs 31160 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑥) · (normℎ‘𝑦))) | |
| 24 | normcl 31104 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℋ → (normℎ‘𝑥) ∈ ℝ) | |
| 25 | recn 11134 | . . . . . . . . . . . . . . 15 ⊢ ((normℎ‘𝑥) ∈ ℝ → (normℎ‘𝑥) ∈ ℂ) | |
| 26 | recn 11134 | . . . . . . . . . . . . . . 15 ⊢ ((normℎ‘𝑦) ∈ ℝ → (normℎ‘𝑦) ∈ ℂ) | |
| 27 | mulcom 11130 | . . . . . . . . . . . . . . 15 ⊢ (((normℎ‘𝑥) ∈ ℂ ∧ (normℎ‘𝑦) ∈ ℂ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) | |
| 28 | 25, 26, 27 | syl2an 596 | . . . . . . . . . . . . . 14 ⊢ (((normℎ‘𝑥) ∈ ℝ ∧ (normℎ‘𝑦) ∈ ℝ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) |
| 29 | 24, 19, 28 | syl2an 596 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((normℎ‘𝑥) · (normℎ‘𝑦)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) |
| 30 | 23, 29 | breqtrd 5128 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
| 31 | 30 | adantll 714 | . . . . . . . . . . 11 ⊢ (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
| 32 | 31 | adantr 480 | . . . . . . . . . 10 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑥 ·ih 𝑦)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
| 33 | 22, 32 | eqbrtrd 5124 | . . . . . . . . 9 ⊢ ((((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) |
| 34 | 33 | ex 412 | . . . . . . . 8 ⊢ (((𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
| 35 | 34 | an32s 652 | . . . . . . 7 ⊢ (((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) → (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
| 36 | 35 | ralimdva 3145 | . . . . . 6 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
| 37 | oveq1 7376 | . . . . . . . . 9 ⊢ (𝑧 = (normℎ‘𝑦) → (𝑧 · (normℎ‘𝑥)) = ((normℎ‘𝑦) · (normℎ‘𝑥))) | |
| 38 | 37 | breq2d 5114 | . . . . . . . 8 ⊢ (𝑧 = (normℎ‘𝑦) → ((abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)) ↔ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
| 39 | 38 | ralbidv 3156 | . . . . . . 7 ⊢ (𝑧 = (normℎ‘𝑦) → (∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)) ↔ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥)))) |
| 40 | 39 | rspcev 3585 | . . . . . 6 ⊢ (((normℎ‘𝑦) ∈ ℝ ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ ((normℎ‘𝑦) · (normℎ‘𝑥))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥))) |
| 41 | 20, 36, 40 | syl6an 684 | . . . . 5 ⊢ ((𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) |
| 42 | 41 | rexlimdva 3134 | . . . 4 ⊢ (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) |
| 43 | lnfncon 32035 | . . . 4 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝑧 · (normℎ‘𝑥)))) | |
| 44 | 42, 43 | sylibrd 259 | . . 3 ⊢ (𝑇 ∈ LinFn → (∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) → 𝑇 ∈ ContFn)) |
| 45 | 18, 44 | impbid 212 | . 2 ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
| 46 | 1, 45 | bitr3d 281 | 1 ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ifcif 4484 {csn 4585 class class class wbr 5102 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 · cmul 11049 ≤ cle 11185 abscabs 15176 ℋchba 30898 ·ih csp 30901 normℎcno 30902 normfncnmf 30930 ContFnccnfn 30932 LinFnclf 30933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvmulass 30986 ax-hvdistr1 30987 ax-hvdistr2 30988 ax-hvmul0 30989 ax-hfi 31058 ax-his1 31061 ax-his2 31062 ax-his3 31063 ax-his4 31064 ax-hcompl 31181 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-cn 23147 df-cnp 23148 df-lm 23149 df-t1 23234 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cfil 25188 df-cau 25189 df-cmet 25190 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-dip 30680 df-ssp 30701 df-ph 30792 df-cbn 30842 df-hnorm 30947 df-hba 30948 df-hvsub 30950 df-hlim 30951 df-hcau 30952 df-sh 31186 df-ch 31200 df-oc 31231 df-ch0 31232 df-nmfn 31824 df-nlfn 31825 df-cnfn 31826 df-lnfn 31827 |
| This theorem is referenced by: rnbra 32086 |
| Copyright terms: Public domain | W3C validator |