HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopcon Structured version   Visualization version   GIF version

Theorem lnopcon 31757
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnopcon (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem lnopcon
StepHypRef Expression
1 eleq1 2813 . . 3 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ ContOp ↔ if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp))
2 fveq1 6880 . . . . . 6 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦))
32fveq2d 6885 . . . . 5 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (norm‘(𝑇𝑦)) = (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)))
43breq1d 5148 . . . 4 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → ((norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦))))
54rexralbidv 3212 . . 3 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦))))
61, 5bibi12d 345 . 2 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ↔ (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦)))))
7 idlnop 31714 . . . 4 ( I ↾ ℋ) ∈ LinOp
87elimel 4589 . . 3 if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ LinOp
98lnopconi 31756 . 2 (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦)))
106, 9dedth 4578 1 (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wral 3053  wrex 3062  ifcif 4520   class class class wbr 5138   I cid 5563  cres 5668  cfv 6533  (class class class)co 7401  cr 11105   · cmul 11111  cle 11246  chba 30641  normcno 30645  ContOpccop 30668  LinOpclo 30669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-hilex 30721  ax-hfvadd 30722  ax-hvcom 30723  ax-hvass 30724  ax-hv0cl 30725  ax-hvaddid 30726  ax-hfvmul 30727  ax-hvmulid 30728  ax-hvmulass 30729  ax-hvdistr1 30730  ax-hvdistr2 30731  ax-hvmul0 30732  ax-hfi 30801  ax-his1 30804  ax-his2 30805  ax-his3 30806  ax-his4 30807
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-grpo 30215  df-gid 30216  df-ablo 30267  df-vc 30281  df-nv 30314  df-va 30317  df-ba 30318  df-sm 30319  df-0v 30320  df-nmcv 30322  df-hnorm 30690  df-hba 30691  df-hvsub 30693  df-nmop 31561  df-cnop 31562  df-lnop 31563  df-unop 31565
This theorem is referenced by:  lnopcnbd  31758
  Copyright terms: Public domain W3C validator