HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopcon Structured version   Visualization version   GIF version

Theorem lnopcon 31998
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnopcon (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem lnopcon
StepHypRef Expression
1 eleq1 2816 . . 3 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ ContOp ↔ if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp))
2 fveq1 6825 . . . . . 6 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦))
32fveq2d 6830 . . . . 5 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (norm‘(𝑇𝑦)) = (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)))
43breq1d 5105 . . . 4 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → ((norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦))))
54rexralbidv 3195 . . 3 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦))))
61, 5bibi12d 345 . 2 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ↔ (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦)))))
7 idlnop 31955 . . . 4 ( I ↾ ℋ) ∈ LinOp
87elimel 4548 . . 3 if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ LinOp
98lnopconi 31997 . 2 (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦)))
106, 9dedth 4537 1 (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ifcif 4478   class class class wbr 5095   I cid 5517  cres 5625  cfv 6486  (class class class)co 7353  cr 11027   · cmul 11033  cle 11169  chba 30882  normcno 30886  ContOpccop 30909  LinOpclo 30910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-hilex 30962  ax-hfvadd 30963  ax-hvcom 30964  ax-hvass 30965  ax-hv0cl 30966  ax-hvaddid 30967  ax-hfvmul 30968  ax-hvmulid 30969  ax-hvmulass 30970  ax-hvdistr1 30971  ax-hvdistr2 30972  ax-hvmul0 30973  ax-hfi 31042  ax-his1 31045  ax-his2 31046  ax-his3 31047  ax-his4 31048
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-grpo 30456  df-gid 30457  df-ablo 30508  df-vc 30522  df-nv 30555  df-va 30558  df-ba 30559  df-sm 30560  df-0v 30561  df-nmcv 30563  df-hnorm 30931  df-hba 30932  df-hvsub 30934  df-nmop 31802  df-cnop 31803  df-lnop 31804  df-unop 31806
This theorem is referenced by:  lnopcnbd  31999
  Copyright terms: Public domain W3C validator