| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopcon | Structured version Visualization version GIF version | ||
| Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopcon | ⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ ContOp ↔ if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp)) | |
| 2 | fveq1 6825 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (𝑇‘𝑦) = (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) | |
| 3 | 2 | fveq2d 6830 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (normℎ‘(𝑇‘𝑦)) = (normℎ‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦))) |
| 4 | 3 | breq1d 5105 | . . . 4 ⊢ (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → ((normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ (normℎ‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) |
| 5 | 4 | rexralbidv 3195 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) |
| 6 | 1, 5 | bibi12d 345 | . 2 ⊢ (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) ↔ (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))))) |
| 7 | idlnop 31955 | . . . 4 ⊢ ( I ↾ ℋ) ∈ LinOp | |
| 8 | 7 | elimel 4548 | . . 3 ⊢ if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ LinOp |
| 9 | 8 | lnopconi 31997 | . 2 ⊢ (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
| 10 | 6, 9 | dedth 4537 | 1 ⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ifcif 4478 class class class wbr 5095 I cid 5517 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 · cmul 11033 ≤ cle 11169 ℋchba 30882 normℎcno 30886 ContOpccop 30909 LinOpclo 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-hilex 30962 ax-hfvadd 30963 ax-hvcom 30964 ax-hvass 30965 ax-hv0cl 30966 ax-hvaddid 30967 ax-hfvmul 30968 ax-hvmulid 30969 ax-hvmulass 30970 ax-hvdistr1 30971 ax-hvdistr2 30972 ax-hvmul0 30973 ax-hfi 31042 ax-his1 31045 ax-his2 31046 ax-his3 31047 ax-his4 31048 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-seq 13928 df-exp 13988 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-grpo 30456 df-gid 30457 df-ablo 30508 df-vc 30522 df-nv 30555 df-va 30558 df-ba 30559 df-sm 30560 df-0v 30561 df-nmcv 30563 df-hnorm 30931 df-hba 30932 df-hvsub 30934 df-nmop 31802 df-cnop 31803 df-lnop 31804 df-unop 31806 |
| This theorem is referenced by: lnopcnbd 31999 |
| Copyright terms: Public domain | W3C validator |