Proof of Theorem dipdir
Step | Hyp | Ref
| Expression |
1 | | dipdir.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
2 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
3 | 1, 2 | syl5eq 2791 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → 𝑋
= (BaseSet‘if(𝑈
∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))) |
4 | 3 | eleq2d 2824 |
. . . . 5
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)))) |
5 | 3 | eleq2d 2824 |
. . . . 5
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)))) |
6 | 3 | eleq2d 2824 |
. . . . 5
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝐶 ∈ 𝑋 ↔ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)))) |
7 | 4, 5, 6 | 3anbi123d 1434 |
. . . 4
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ 𝐵
∈ (BaseSet‘if(𝑈
∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉)) ∧ 𝐶 ∈
(BaseSet‘if(𝑈 ∈
CPreHilOLD, 𝑈,
〈〈 + , · 〉, abs〉))))) |
8 | | dipdir.2 |
. . . . . . . . 9
⊢ 𝐺 = ( +𝑣
‘𝑈) |
9 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ( +𝑣 ‘𝑈) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))) |
10 | 8, 9 | syl5eq 2791 |
. . . . . . . 8
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → 𝐺
= ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
11 | 10 | oveqd 7272 |
. . . . . . 7
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝐴𝐺𝐵) = (𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))𝐵)) |
12 | 11 | oveq1d 7270 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))𝐵)𝑃𝐶)) |
13 | | dipdir.7 |
. . . . . . . 8
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
14 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (·𝑖OLD‘𝑈) =
(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
15 | 13, 14 | syl5eq 2791 |
. . . . . . 7
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → 𝑃
= (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
16 | 15 | oveqd 7272 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶)) |
17 | 12, 16 | eqtrd 2778 |
. . . . 5
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶)) |
18 | 15 | oveqd 7272 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝐴𝑃𝐶) = (𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶)) |
19 | 15 | oveqd 7272 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶)) |
20 | 18, 19 | oveq12d 7273 |
. . . . 5
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶))) |
21 | 17, 20 | eqeq12d 2754 |
. . . 4
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶)))) |
22 | 7, 21 | imbi12d 344 |
. . 3
⊢ (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ 𝐵
∈ (BaseSet‘if(𝑈
∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉)) ∧ 𝐶 ∈
(BaseSet‘if(𝑈 ∈
CPreHilOLD, 𝑈,
〈〈 + , · 〉, abs〉))) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶))))) |
23 | | eqid 2738 |
. . . 4
⊢
(BaseSet‘if(𝑈
∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) |
24 | | eqid 2738 |
. . . 4
⊢ (
+𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) |
25 | | eqid 2738 |
. . . 4
⊢ (
·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉)) |
26 | | eqid 2738 |
. . . 4
⊢
(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉)) |
27 | | elimphu 29084 |
. . . 4
⊢ if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉) ∈ CPreHilOLD |
28 | 23, 24, 25, 26, 27 | ipdiri 29093 |
. . 3
⊢ ((𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ 𝐶
∈ (BaseSet‘if(𝑈
∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))) → ((𝐴(
+𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝐶))) |
29 | 22, 28 | dedth 4514 |
. 2
⊢ (𝑈 ∈ CPreHilOLD
→ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))) |
30 | 29 | imp 406 |
1
⊢ ((𝑈 ∈ CPreHilOLD
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |