MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipdir Structured version   Visualization version   GIF version

Theorem dipdir 29204
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipdir.1 𝑋 = (BaseSet‘𝑈)
dipdir.2 𝐺 = ( +𝑣𝑈)
dipdir.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipdir ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))

Proof of Theorem dipdir
StepHypRef Expression
1 dipdir.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 fveq2 6774 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
31, 2eqtrid 2790 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
43eleq2d 2824 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝑋𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
53eleq2d 2824 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐵𝑋𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
63eleq2d 2824 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐶𝑋𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
74, 5, 63anbi123d 1435 . . . 4 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
8 dipdir.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
9 fveq2 6774 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ( +𝑣𝑈) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
108, 9eqtrid 2790 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐺 = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1110oveqd 7292 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝐺𝐵) = (𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵))
1211oveq1d 7290 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)𝑃𝐶))
13 dipdir.7 . . . . . . . 8 𝑃 = (·𝑖OLD𝑈)
14 fveq2 6774 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (·𝑖OLD𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1513, 14eqtrid 2790 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1615oveqd 7292 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1712, 16eqtrd 2778 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1815oveqd 7292 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝑃𝐶) = (𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1915oveqd 7292 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
2018, 19oveq12d 7293 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))
2117, 20eqeq12d 2754 . . . 4 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))))
227, 21imbi12d 345 . . 3 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))))
23 eqid 2738 . . . 4 (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
24 eqid 2738 . . . 4 ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
25 eqid 2738 . . . 4 ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2738 . . . 4 (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
27 elimphu 29183 . . . 4 if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CPreHilOLD
2823, 24, 25, 26, 27ipdiri 29192 . . 3 ((𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))
2922, 28dedth 4517 . 2 (𝑈 ∈ CPreHilOLD → ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))))
3029imp 407 1 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  ifcif 4459  cop 4567  cfv 6433  (class class class)co 7275   + caddc 10874   · cmul 10876  abscabs 14945   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  ·𝑖OLDcdip 29062  CPreHilOLDccphlo 29174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-dip 29063  df-ph 29175
This theorem is referenced by:  dipdi  29205  ip2dii  29206  dipsubdir  29210  ipblnfi  29217  hlipdir  29274
  Copyright terms: Public domain W3C validator