MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipdir Structured version   Visualization version   GIF version

Theorem dipdir 28724
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipdir.1 𝑋 = (BaseSet‘𝑈)
dipdir.2 𝐺 = ( +𝑣𝑈)
dipdir.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipdir ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))

Proof of Theorem dipdir
StepHypRef Expression
1 dipdir.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 fveq2 6658 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
31, 2syl5eq 2805 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
43eleq2d 2837 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝑋𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
53eleq2d 2837 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐵𝑋𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
63eleq2d 2837 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐶𝑋𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
74, 5, 63anbi123d 1433 . . . 4 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
8 dipdir.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
9 fveq2 6658 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ( +𝑣𝑈) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
108, 9syl5eq 2805 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐺 = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1110oveqd 7167 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝐺𝐵) = (𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵))
1211oveq1d 7165 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)𝑃𝐶))
13 dipdir.7 . . . . . . . 8 𝑃 = (·𝑖OLD𝑈)
14 fveq2 6658 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (·𝑖OLD𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1513, 14syl5eq 2805 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1615oveqd 7167 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1712, 16eqtrd 2793 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1815oveqd 7167 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝑃𝐶) = (𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1915oveqd 7167 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
2018, 19oveq12d 7168 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))
2117, 20eqeq12d 2774 . . . 4 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))))
227, 21imbi12d 348 . . 3 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))))
23 eqid 2758 . . . 4 (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
24 eqid 2758 . . . 4 ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
25 eqid 2758 . . . 4 ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2758 . . . 4 (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
27 elimphu 28703 . . . 4 if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CPreHilOLD
2823, 24, 25, 26, 27ipdiri 28712 . . 3 ((𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))
2922, 28dedth 4478 . 2 (𝑈 ∈ CPreHilOLD → ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))))
3029imp 410 1 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  ifcif 4420  cop 4528  cfv 6335  (class class class)co 7150   + caddc 10578   · cmul 10580  abscabs 14641   +𝑣 cpv 28467  BaseSetcba 28468   ·𝑠OLD cns 28469  ·𝑖OLDcdip 28582  CPreHilOLDccphlo 28694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-grpo 28375  df-gid 28376  df-ginv 28377  df-ablo 28427  df-vc 28441  df-nv 28474  df-va 28477  df-ba 28478  df-sm 28479  df-0v 28480  df-nmcv 28482  df-dip 28583  df-ph 28695
This theorem is referenced by:  dipdi  28725  ip2dii  28726  dipsubdir  28730  ipblnfi  28737  hlipdir  28794
  Copyright terms: Public domain W3C validator