MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipdir Structured version   Visualization version   GIF version

Theorem dipdir 29105
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipdir.1 𝑋 = (BaseSet‘𝑈)
dipdir.2 𝐺 = ( +𝑣𝑈)
dipdir.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipdir ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))

Proof of Theorem dipdir
StepHypRef Expression
1 dipdir.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 fveq2 6756 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
31, 2syl5eq 2791 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
43eleq2d 2824 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝑋𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
53eleq2d 2824 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐵𝑋𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
63eleq2d 2824 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐶𝑋𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
74, 5, 63anbi123d 1434 . . . 4 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
8 dipdir.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
9 fveq2 6756 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ( +𝑣𝑈) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
108, 9syl5eq 2791 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐺 = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1110oveqd 7272 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝐺𝐵) = (𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵))
1211oveq1d 7270 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)𝑃𝐶))
13 dipdir.7 . . . . . . . 8 𝑃 = (·𝑖OLD𝑈)
14 fveq2 6756 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (·𝑖OLD𝑈) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1513, 14syl5eq 2791 . . . . . . 7 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1615oveqd 7272 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1712, 16eqtrd 2778 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1815oveqd 7272 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐴𝑃𝐶) = (𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
1915oveqd 7272 . . . . . 6 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝐵𝑃𝐶) = (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))
2018, 19oveq12d 7273 . . . . 5 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))
2117, 20eqeq12d 2754 . . . 4 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶))))
227, 21imbi12d 344 . . 3 (𝑈 = if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) ↔ ((𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))))
23 eqid 2738 . . . 4 (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
24 eqid 2738 . . . 4 ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
25 eqid 2738 . . . 4 ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( ·𝑠OLD ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2738 . . . 4 (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
27 elimphu 29084 . . . 4 if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CPreHilOLD
2823, 24, 25, 26, 27ipdiri 29093 . . 3 ((𝐴 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐵 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ 𝐶 ∈ (BaseSet‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) → ((𝐴( +𝑣 ‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐵)(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) = ((𝐴(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶) + (𝐵(·𝑖OLD‘if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝐶)))
2922, 28dedth 4514 . 2 (𝑈 ∈ CPreHilOLD → ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))))
3029imp 406 1 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ifcif 4456  cop 4564  cfv 6418  (class class class)co 7255   + caddc 10805   · cmul 10807  abscabs 14873   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  ·𝑖OLDcdip 28963  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-dip 28964  df-ph 29076
This theorem is referenced by:  dipdi  29106  ip2dii  29107  dipsubdir  29111  ipblnfi  29118  hlipdir  29175
  Copyright terms: Public domain W3C validator