| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imsmet | Structured version Visualization version GIF version | ||
| Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imsmet.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| imsmet.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| imsmet | ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsmet.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 2 | fveq2 6861 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (IndMet‘𝑈) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 3 | imsmet.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | fveq2 6861 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 5 | 3, 4 | eqtrid 2777 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑋 = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 6 | 5 | fveq2d 6865 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (Met‘𝑋) = (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 7 | 2, 6 | eleq12d 2823 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → ((IndMet‘𝑈) ∈ (Met‘𝑋) ↔ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))))) |
| 8 | eqid 2730 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 9 | eqid 2730 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 10 | eqid 2730 | . . . 4 ⊢ (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) = (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 11 | eqid 2730 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 12 | eqid 2730 | . . . 4 ⊢ (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 13 | eqid 2730 | . . . 4 ⊢ (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 14 | eqid 2730 | . . . 4 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 15 | elimnvu 30620 | . . . 4 ⊢ if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) ∈ NrmCVec | |
| 16 | 8, 9, 10, 11, 12, 13, 14, 15 | imsmetlem 30626 | . . 3 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 17 | 7, 16 | dedth 4550 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (Met‘𝑋)) |
| 18 | 1, 17 | eqeltrid 2833 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4491 〈cop 4598 ‘cfv 6514 + caddc 11078 · cmul 11080 abscabs 15207 Metcmet 21257 invcgn 30427 NrmCVeccnv 30520 +𝑣 cpv 30521 BaseSetcba 30522 ·𝑠OLD cns 30523 0veccn0v 30524 normCVcnmcv 30526 IndMetcims 30527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-met 21265 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-vs 30535 df-nmcv 30536 df-ims 30537 |
| This theorem is referenced by: imsxmet 30628 vacn 30630 nmcvcn 30631 smcnlem 30633 blocni 30741 minvecolem2 30811 minvecolem3 30812 minvecolem4a 30813 minvecolem4 30816 minvecolem7 30819 hhmet 31110 hhssmet 31212 |
| Copyright terms: Public domain | W3C validator |