![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imsmet | Structured version Visualization version GIF version |
Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsmet.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
imsmet.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
imsmet | ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsmet.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
2 | fveq2 6892 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (IndMet‘𝑈) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) | |
3 | imsmet.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | fveq2 6892 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) | |
5 | 3, 4 | eqtrid 2785 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) |
6 | 5 | fveq2d 6896 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (Met‘𝑋) = (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))) |
7 | 2, 6 | eleq12d 2828 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((IndMet‘𝑈) ∈ (Met‘𝑋) ↔ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))) |
8 | eqid 2733 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) | |
9 | eqid 2733 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) | |
10 | eqid 2733 | . . . 4 ⊢ (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) = (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) | |
11 | eqid 2733 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) | |
12 | eqid 2733 | . . . 4 ⊢ (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) | |
13 | eqid 2733 | . . . 4 ⊢ (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) | |
14 | eqid 2733 | . . . 4 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) | |
15 | elimnvu 29937 | . . . 4 ⊢ if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec | |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | imsmetlem 29943 | . . 3 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) |
17 | 7, 16 | dedth 4587 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (Met‘𝑋)) |
18 | 1, 17 | eqeltrid 2838 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ifcif 4529 ⟨cop 4635 ‘cfv 6544 + caddc 11113 · cmul 11115 abscabs 15181 Metcmet 20930 invcgn 29744 NrmCVeccnv 29837 +𝑣 cpv 29838 BaseSetcba 29839 ·𝑠OLD cns 29840 0veccn0v 29841 normCVcnmcv 29843 IndMetcims 29844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-met 20938 df-grpo 29746 df-gid 29747 df-ginv 29748 df-gdiv 29749 df-ablo 29798 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-0v 29851 df-vs 29852 df-nmcv 29853 df-ims 29854 |
This theorem is referenced by: imsxmet 29945 vacn 29947 nmcvcn 29948 smcnlem 29950 blocni 30058 minvecolem2 30128 minvecolem3 30129 minvecolem4a 30130 minvecolem4 30133 minvecolem7 30136 hhmet 30427 hhssmet 30529 |
Copyright terms: Public domain | W3C validator |