| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imsmet | Structured version Visualization version GIF version | ||
| Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imsmet.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| imsmet.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| imsmet | ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsmet.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 2 | fveq2 6817 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (IndMet‘𝑈) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 3 | imsmet.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | fveq2 6817 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 5 | 3, 4 | eqtrid 2778 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑋 = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 6 | 5 | fveq2d 6821 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (Met‘𝑋) = (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) |
| 7 | 2, 6 | eleq12d 2825 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → ((IndMet‘𝑈) ∈ (Met‘𝑋) ↔ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))))) |
| 8 | eqid 2731 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 9 | eqid 2731 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 10 | eqid 2731 | . . . 4 ⊢ (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) = (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
| 11 | eqid 2731 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 12 | eqid 2731 | . . . 4 ⊢ (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 13 | eqid 2731 | . . . 4 ⊢ (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 14 | eqid 2731 | . . . 4 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
| 15 | elimnvu 30656 | . . . 4 ⊢ if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) ∈ NrmCVec | |
| 16 | 8, 9, 10, 11, 12, 13, 14, 15 | imsmetlem 30662 | . . 3 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) |
| 17 | 7, 16 | dedth 4529 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (Met‘𝑋)) |
| 18 | 1, 17 | eqeltrid 2835 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4470 〈cop 4577 ‘cfv 6476 + caddc 11004 · cmul 11006 abscabs 15136 Metcmet 21272 invcgn 30463 NrmCVeccnv 30556 +𝑣 cpv 30557 BaseSetcba 30558 ·𝑠OLD cns 30559 0veccn0v 30560 normCVcnmcv 30562 IndMetcims 30563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-met 21280 df-grpo 30465 df-gid 30466 df-ginv 30467 df-gdiv 30468 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-vs 30571 df-nmcv 30572 df-ims 30573 |
| This theorem is referenced by: imsxmet 30664 vacn 30666 nmcvcn 30667 smcnlem 30669 blocni 30777 minvecolem2 30847 minvecolem3 30848 minvecolem4a 30849 minvecolem4 30852 minvecolem7 30855 hhmet 31146 hhssmet 31248 |
| Copyright terms: Public domain | W3C validator |