MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsmet Structured version   Visualization version   GIF version

Theorem imsmet 28474
Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsmet.1 𝑋 = (BaseSet‘𝑈)
imsmet.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsmet (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem imsmet
StepHypRef Expression
1 imsmet.8 . 2 𝐷 = (IndMet‘𝑈)
2 fveq2 6645 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (IndMet‘𝑈) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
3 imsmet.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
4 fveq2 6645 . . . . . 6 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
53, 4syl5eq 2845 . . . . 5 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
65fveq2d 6649 . . . 4 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (Met‘𝑋) = (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
72, 6eleq12d 2884 . . 3 (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((IndMet‘𝑈) ∈ (Met‘𝑋) ↔ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
8 eqid 2798 . . . 4 (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
9 eqid 2798 . . . 4 ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
10 eqid 2798 . . . 4 (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))) = (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
11 eqid 2798 . . . 4 ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
12 eqid 2798 . . . 4 (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
13 eqid 2798 . . . 4 (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
14 eqid 2798 . . . 4 (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
15 elimnvu 28467 . . . 4 if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ NrmCVec
168, 9, 10, 11, 12, 13, 14, 15imsmetlem 28473 . . 3 (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
177, 16dedth 4481 . 2 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (Met‘𝑋))
181, 17eqeltrid 2894 1 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  ifcif 4425  cop 4531  cfv 6324   + caddc 10529   · cmul 10531  abscabs 14585  Metcmet 20077  invcgn 28274  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369   ·𝑠OLD cns 28370  0veccn0v 28371  normCVcnmcv 28373  IndMetcims 28374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-met 20085  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384
This theorem is referenced by:  imsxmet  28475  vacn  28477  nmcvcn  28478  smcnlem  28480  blocni  28588  minvecolem2  28658  minvecolem3  28659  minvecolem4a  28660  minvecolem4  28663  minvecolem7  28666  hhmet  28957  hhssmet  29059
  Copyright terms: Public domain W3C validator