HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfncon Structured version   Visualization version   GIF version

Theorem lnfncon 30169
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfncon (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem lnfncon
StepHypRef Expression
1 eleq1 2827 . . 3 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇 ∈ ContFn ↔ if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ ContFn))
2 fveq1 6738 . . . . . 6 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇𝑦) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝑦))
32fveq2d 6743 . . . . 5 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (abs‘(𝑇𝑦)) = (abs‘(if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝑦)))
43breq1d 5080 . . . 4 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → ((abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ (abs‘(if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝑦)) ≤ (𝑥 · (norm𝑦))))
54rexralbidv 3230 . . 3 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝑦)) ≤ (𝑥 · (norm𝑦))))
61, 5bibi12d 349 . 2 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → ((𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ↔ (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝑦)) ≤ (𝑥 · (norm𝑦)))))
7 0lnfn 30098 . . . 4 ( ℋ × {0}) ∈ LinFn
87elimel 4525 . . 3 if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ LinFn
98lnfnconi 30168 . 2 (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝑦)) ≤ (𝑥 · (norm𝑦)))
106, 9dedth 4514 1 (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2112  wral 3064  wrex 3065  ifcif 4456  {csn 4558   class class class wbr 5070   × cxp 5567  cfv 6401  (class class class)co 7235  cr 10758  0cc0 10759   · cmul 10764  cle 10898  abscabs 14830  chba 29032  normcno 29036  ContFnccnfn 29066  LinFnclf 29067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836  ax-pre-sup 10837  ax-hilex 29112  ax-hfvadd 29113  ax-hv0cl 29116  ax-hvaddid 29117  ax-hfvmul 29118  ax-hvmulid 29119  ax-hvmulass 29120  ax-hvmul0 29123  ax-hfi 29192  ax-his1 29195  ax-his3 29197  ax-his4 29198
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-2nd 7784  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-er 8415  df-map 8534  df-en 8651  df-dom 8652  df-sdom 8653  df-sup 9088  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-div 11520  df-nn 11861  df-2 11923  df-3 11924  df-n0 12121  df-z 12207  df-uz 12469  df-rp 12617  df-seq 13607  df-exp 13668  df-cj 14695  df-re 14696  df-im 14697  df-sqrt 14831  df-abs 14832  df-hnorm 29081  df-hvsub 29084  df-nmfn 29958  df-cnfn 29960  df-lnfn 29961
This theorem is referenced by:  lnfncnbd  30170  riesz1  30178  cnlnadjlem2  30181
  Copyright terms: Public domain W3C validator