MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccmbl Structured version   Visualization version   GIF version

Theorem iccmbl 24801
Description: A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
iccmbl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)

Proof of Theorem iccmbl
StepHypRef Expression
1 iccssre 13231 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2 dfss4 4202 . . 3 ((𝐴[,]𝐵) ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ (𝐴[,]𝐵))) = (𝐴[,]𝐵))
31, 2sylib 217 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (ℝ ∖ (𝐴[,]𝐵))) = (𝐴[,]𝐵))
4 difreicc 13286 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
5 ioombl 24800 . . . . 5 (-∞(,)𝐴) ∈ dom vol
6 ioombl 24800 . . . . 5 (𝐵(,)+∞) ∈ dom vol
7 unmbl 24772 . . . . 5 (((-∞(,)𝐴) ∈ dom vol ∧ (𝐵(,)+∞) ∈ dom vol) → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ dom vol)
85, 6, 7mp2an 689 . . . 4 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ dom vol
94, 8eqeltrdi 2846 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) ∈ dom vol)
10 cmmbl 24769 . . 3 ((ℝ ∖ (𝐴[,]𝐵)) ∈ dom vol → (ℝ ∖ (ℝ ∖ (𝐴[,]𝐵))) ∈ dom vol)
119, 10syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (ℝ ∖ (𝐴[,]𝐵))) ∈ dom vol)
123, 11eqeltrrd 2839 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cdif 3893  cun 3894  wss 3896  dom cdm 5605  (class class class)co 7313  cr 10940  +∞cpnf 11076  -∞cmnf 11077  (,)cioo 13149  [,]cicc 13152  volcvol 24698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-er 8544  df-map 8663  df-pm 8664  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-inf 9270  df-oi 9337  df-dju 9727  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-z 12390  df-uz 12653  df-q 12759  df-rp 12801  df-xadd 12919  df-ioo 13153  df-ico 13155  df-icc 13156  df-fz 13310  df-fzo 13453  df-fl 13582  df-seq 13792  df-exp 13853  df-hash 14115  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-clim 15266  df-rlim 15267  df-sum 15467  df-xmet 20661  df-met 20662  df-ovol 24699  df-vol 24700
This theorem is referenced by:  iccvolcl  24802  ovolioo  24803  dyadmbl  24835  volsup2  24840  volcn  24841  volivth  24842  mbfi1fseqlem4  24954  cniccibl  25076  cnicciblnc  25078  ftc1lem4  25274  ftc1cnnclem  35908  areacirc  35930  3factsumint1  40241  iocmbl  41255  arearect  41257  areaquad  41258  volicc  43783  fourierdlem87  43978  fourierdlem107  43998
  Copyright terms: Public domain W3C validator