![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccmbl | Structured version Visualization version GIF version |
Description: A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
iccmbl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssre 13454 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
2 | dfss4 4257 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ (𝐴[,]𝐵))) = (𝐴[,]𝐵)) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (ℝ ∖ (𝐴[,]𝐵))) = (𝐴[,]𝐵)) |
4 | difreicc 13509 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) | |
5 | ioombl 25582 | . . . . 5 ⊢ (-∞(,)𝐴) ∈ dom vol | |
6 | ioombl 25582 | . . . . 5 ⊢ (𝐵(,)+∞) ∈ dom vol | |
7 | unmbl 25554 | . . . . 5 ⊢ (((-∞(,)𝐴) ∈ dom vol ∧ (𝐵(,)+∞) ∈ dom vol) → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ dom vol) | |
8 | 5, 6, 7 | mp2an 690 | . . . 4 ⊢ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ dom vol |
9 | 4, 8 | eqeltrdi 2834 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) ∈ dom vol) |
10 | cmmbl 25551 | . . 3 ⊢ ((ℝ ∖ (𝐴[,]𝐵)) ∈ dom vol → (ℝ ∖ (ℝ ∖ (𝐴[,]𝐵))) ∈ dom vol) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (ℝ ∖ (𝐴[,]𝐵))) ∈ dom vol) |
12 | 3, 11 | eqeltrrd 2827 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∖ cdif 3943 ∪ cun 3944 ⊆ wss 3946 dom cdm 5674 (class class class)co 7416 ℝcr 11148 +∞cpnf 11286 -∞cmnf 11287 (,)cioo 13372 [,]cicc 13375 volcvol 25480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9478 df-inf 9479 df-oi 9546 df-dju 9937 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-n0 12519 df-z 12605 df-uz 12869 df-q 12979 df-rp 13023 df-xadd 13141 df-ioo 13376 df-ico 13378 df-icc 13379 df-fz 13533 df-fzo 13676 df-fl 13806 df-seq 14016 df-exp 14076 df-hash 14343 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-clim 15485 df-rlim 15486 df-sum 15686 df-xmet 21332 df-met 21333 df-ovol 25481 df-vol 25482 |
This theorem is referenced by: iccvolcl 25584 ovolioo 25585 dyadmbl 25617 volsup2 25622 volcn 25623 volivth 25624 mbfi1fseqlem4 25736 cniccibl 25858 cnicciblnc 25860 ftc1lem4 26062 ftc1cnnclem 37405 areacirc 37427 3factsumint1 41733 iocmbl 42915 arearect 42917 areaquad 42918 volicc 45655 fourierdlem87 45850 fourierdlem107 45870 |
Copyright terms: Public domain | W3C validator |