![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsmulwd | Structured version Visualization version GIF version |
Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. (Contributed by Scott Fenton, 12-Mar-2025.) |
Ref | Expression |
---|---|
divsmulwd.1 | โข (๐ โ ๐ด โ No ) |
divsmulwd.2 | โข (๐ โ ๐ต โ No ) |
divsmulwd.3 | โข (๐ โ ๐ถ โ No ) |
divsmulwd.4 | โข (๐ โ ๐ถ โ 0s ) |
divsmulwd.5 | โข (๐ โ โ๐ฅ โ No (๐ถ ยทs ๐ฅ) = 1s ) |
Ref | Expression |
---|---|
divsmulwd | โข (๐ โ ((๐ด /su ๐ถ) = ๐ต โ (๐ถ ยทs ๐ต) = ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsmulwd.1 | . 2 โข (๐ โ ๐ด โ No ) | |
2 | divsmulwd.2 | . 2 โข (๐ โ ๐ต โ No ) | |
3 | divsmulwd.3 | . . 3 โข (๐ โ ๐ถ โ No ) | |
4 | divsmulwd.4 | . . 3 โข (๐ โ ๐ถ โ 0s ) | |
5 | 3, 4 | jca 510 | . 2 โข (๐ โ (๐ถ โ No โง ๐ถ โ 0s )) |
6 | divsmulwd.5 | . 2 โข (๐ โ โ๐ฅ โ No (๐ถ ยทs ๐ฅ) = 1s ) | |
7 | divsmulw 28120 | . 2 โข (((๐ด โ No โง ๐ต โ No โง (๐ถ โ No โง ๐ถ โ 0s )) โง โ๐ฅ โ No (๐ถ ยทs ๐ฅ) = 1s ) โ ((๐ด /su ๐ถ) = ๐ต โ (๐ถ ยทs ๐ต) = ๐ด)) | |
8 | 1, 2, 5, 6, 7 | syl31anc 1370 | 1 โข (๐ โ ((๐ด /su ๐ถ) = ๐ต โ (๐ถ ยทs ๐ต) = ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 394 = wceq 1533 โ wcel 2098 โ wne 2937 โwrex 3067 (class class class)co 7426 No csur 27601 0s c0s 27783 1s c1s 27784 ยทs cmuls 28034 /su cdivs 28115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-1o 8495 df-2o 8496 df-nadd 8695 df-no 27604 df-slt 27605 df-bday 27606 df-sle 27706 df-sslt 27742 df-scut 27744 df-0s 27785 df-1s 27786 df-made 27802 df-old 27803 df-left 27805 df-right 27806 df-norec 27883 df-norec2 27894 df-adds 27905 df-negs 27962 df-subs 27963 df-muls 28035 df-divs 28116 |
This theorem is referenced by: divscan2wd 28124 divsmuld 28148 |
Copyright terms: Public domain | W3C validator |