| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldiophelnn0 | Structured version Visualization version GIF version | ||
| Description: Remove antecedent on 𝐵 from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| eldiophelnn0 | ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldiophb 42727 | . 2 ⊢ (𝐴 ∈ (Dioph‘𝐵) ↔ (𝐵 ∈ ℕ0 ∧ ∃𝑏 ∈ (ℤ≥‘𝐵)∃𝑎 ∈ (mzPoly‘(1...𝑏))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0 ↑m (1...𝑏))(𝑐 = (𝑑 ↾ (1...𝐵)) ∧ (𝑎‘𝑑) = 0)})) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 ↑m cmap 8838 0cc0 11127 1c1 11128 ℕ0cn0 12499 ℤ≥cuz 12850 ...cfz 13522 mzPolycmzp 42692 Diophcdioph 42725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-addcl 11187 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-dioph 42726 |
| This theorem is referenced by: eldioph3b 42735 diophin 42742 diophun 42743 eldioph4b 42781 |
| Copyright terms: Public domain | W3C validator |