Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihcnvid1 Structured version   Visualization version   GIF version

Theorem dihcnvid1 40734
Description: The converse isomorphism of an isomorphism. (Contributed by NM, 5-Aug-2014.)
Hypotheses
Ref Expression
dihcnvid1.b 𝐵 = (Base‘𝐾)
dihcnvid1.h 𝐻 = (LHyp‘𝐾)
dihcnvid1.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihcnvid1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼‘(𝐼𝑋)) = 𝑋)

Proof of Theorem dihcnvid1
StepHypRef Expression
1 dihcnvid1.b . . . 4 𝐵 = (Base‘𝐾)
2 dihcnvid1.h . . . 4 𝐻 = (LHyp‘𝐾)
3 dihcnvid1.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
4 eqid 2727 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
5 eqid 2727 . . . 4 (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊))
61, 2, 3, 4, 5dihf11 40729 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1→(LSubSp‘((DVecH‘𝐾)‘𝑊)))
7 f1f1orn 6844 . . 3 (𝐼:𝐵1-1→(LSubSp‘((DVecH‘𝐾)‘𝑊)) → 𝐼:𝐵1-1-onto→ran 𝐼)
86, 7syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1-onto→ran 𝐼)
9 f1ocnvfv1 7279 . 2 ((𝐼:𝐵1-1-onto→ran 𝐼𝑋𝐵) → (𝐼‘(𝐼𝑋)) = 𝑋)
108, 9sylan 579 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼‘(𝐼𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  ccnv 5671  ran crn 5673  1-1wf1 6539  1-1-ontowf1o 6541  cfv 6542  Basecbs 17173  LSubSpclss 20808  HLchlt 38811  LHypclh 39446  DVecHcdvh 40540  DIsoHcdih 40690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-riotaBAD 38414
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17416  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-p1 18411  df-lat 18417  df-clat 18484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cntz 19261  df-lsm 19584  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-lmod 20738  df-lss 20809  df-lsp 20849  df-lvec 20981  df-oposet 38637  df-ol 38639  df-oml 38640  df-covers 38727  df-ats 38728  df-atl 38759  df-cvlat 38783  df-hlat 38812  df-llines 38960  df-lplanes 38961  df-lvols 38962  df-lines 38963  df-psubsp 38965  df-pmap 38966  df-padd 39258  df-lhyp 39450  df-laut 39451  df-ldil 39566  df-ltrn 39567  df-trl 39621  df-tendo 40217  df-edring 40219  df-disoa 40491  df-dvech 40541  df-dib 40601  df-dic 40635  df-dih 40691
This theorem is referenced by:  dih0cnv  40745  dih1cnv  40750  dihatexv  40800  dochval2  40814  dochvalr2  40824  dochoc  40829  djhj  40866  dihjat6  40896
  Copyright terms: Public domain W3C validator