Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7358
ℂcc 11050 + caddc 11055 − cmin 11386 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-ltxr 11195 df-sub 11388 |
This theorem is referenced by: xralrple
13125 quoremz
13761 quoremnn0ALT
13763 intfrac2
13764 intfrac
13792 2cshwcshw
14715 isercoll2
15554 iseralt
15570 mertenslem1
15770 fprodser
15833 risefacfac
15919 fallfacfwd
15920 eflt
16000 efival
16035 bitsmod
16317 bitsinv1lem
16322 odzdvds
16668 modprm0
16678 pcaddlem
16761 vdwapun
16847 vdwlem12
16865 odmodnn0
19323 mndodconglem
19324 mhpmulcl
21542 minveclem4
24799 ivthlem2
24819 dvn2bss
25297 ftc2
25411 mdegmullem
25446 plymullem1
25578 dvtaylp
25732 dvntaylp
25733 dvntaylp0
25734 taylthlem1
25735 ulmbdd
25760 affineequiv
26176 mcubic
26200 quart1lem
26208 quart1
26209 asinsin
26245 birthdaylem2
26305 emcllem6
26353 perfectlem2
26581 lgseisenlem4
26729 lgsquadlem1
26731 addsqnreup
26794 dchrisumlem1
26840 dchrvmasum2if
26848 dchrisum0lem1
26867 selberg3
26910 axsegconlem10
27878 smcnlem
29642 swrdrn3
31812 cycpmco2lem6
31983 oddpwdc
32957 revpfxsfxrev
33712 itg2addnclem3
36134 ftc2nc
36163 dvrelogpow2b
40528 sticksstones10
40566 sticksstones12a
40568 metakunt16
40595 metakunt20
40599 frlmvscadiccat
40684 dffltz
40975 fltnltalem
41003 fltnlta
41004 fzisoeu
43541 lptre2pt
43888 0ellimcdiv
43897 climleltrp
43924 ioodvbdlimc1lem2
44180 dvnprodlem1
44194 itgsinexp
44203 itgsbtaddcnst
44230 dirkertrigeqlem2
44347 fourierdlem4
44359 fourierdlem13
44368 fourierdlem26
44381 fourierdlem41
44396 fourierdlem42
44397 fourierdlem50
44404 fourierdlem60
44414 fourierdlem61
44415 fourierdlem74
44428 fourierdlem75
44429 fourierdlem76
44430 fourierdlem84
44438 fourierdlem89
44443 fourierdlem90
44444 fourierdlem91
44445 fourierdlem93
44447 fourierdlem101
44455 fourierdlem107
44461 fourierdlem111
44465 fourierdlem112
44466 fouriersw
44479 smfaddlem1
45011 sigarcol
45112 perfectALTVlem2
45921 nnpw2pmod
46676 rrx2vlinest
46834 itsclc0xyqsolr
46862 |