Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . . . 6
β’ ((π
β Ring β§ π β π β§ π β π) β π
β Ring) |
2 | | simp2 1137 |
. . . . . 6
β’ ((π
β Ring β§ π β π β§ π β π) β π β π) |
3 | | frlmsplit2.y |
. . . . . . 7
β’ π = (π
freeLMod π) |
4 | | frlmsplit2.b |
. . . . . . 7
β’ π΅ = (Baseβπ) |
5 | | eqid 2732 |
. . . . . . 7
β’
(LSubSpβ((ringLModβπ
) βs π)) =
(LSubSpβ((ringLModβπ
) βs π)) |
6 | 3, 4, 5 | frlmlss 21305 |
. . . . . 6
β’ ((π
β Ring β§ π β π) β π΅ β (LSubSpβ((ringLModβπ
) βs
π))) |
7 | 1, 2, 6 | syl2anc 584 |
. . . . 5
β’ ((π
β Ring β§ π β π β§ π β π) β π΅ β (LSubSpβ((ringLModβπ
) βs
π))) |
8 | | eqid 2732 |
. . . . . 6
β’
(Baseβ((ringLModβπ
) βs π)) =
(Baseβ((ringLModβπ
) βs π)) |
9 | 8, 5 | lssss 20546 |
. . . . 5
β’ (π΅ β
(LSubSpβ((ringLModβπ
) βs π)) β π΅ β (Baseβ((ringLModβπ
) βs
π))) |
10 | | resmpt 6037 |
. . . . 5
β’ (π΅ β
(Baseβ((ringLModβπ
) βs π)) β ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) = (π₯ β π΅ β¦ (π₯ βΎ π))) |
11 | 7, 9, 10 | 3syl 18 |
. . . 4
β’ ((π
β Ring β§ π β π β§ π β π) β ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) = (π₯ β π΅ β¦ (π₯ βΎ π))) |
12 | | frlmsplit2.f |
. . . 4
β’ πΉ = (π₯ β π΅ β¦ (π₯ βΎ π)) |
13 | 11, 12 | eqtr4di 2790 |
. . 3
β’ ((π
β Ring β§ π β π β§ π β π) β ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) = πΉ) |
14 | | rlmlmod 20826 |
. . . . . 6
β’ (π
β Ring β
(ringLModβπ
) β
LMod) |
15 | | eqid 2732 |
. . . . . . 7
β’
((ringLModβπ
)
βs π) = ((ringLModβπ
) βs π) |
16 | | eqid 2732 |
. . . . . . 7
β’
((ringLModβπ
)
βs π) = ((ringLModβπ
) βs π) |
17 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ((ringLModβπ
) βs π)) =
(Baseβ((ringLModβπ
) βs π)) |
18 | | eqid 2732 |
. . . . . . 7
β’ (π₯ β
(Baseβ((ringLModβπ
) βs π)) β¦ (π₯ βΎ π)) = (π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) |
19 | 15, 16, 8, 17, 18 | pwssplit3 20671 |
. . . . . 6
β’
(((ringLModβπ
)
β LMod β§ π β
π β§ π β π) β (π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) β (((ringLModβπ
) βs
π) LMHom
((ringLModβπ
)
βs π))) |
20 | 14, 19 | syl3an1 1163 |
. . . . 5
β’ ((π
β Ring β§ π β π β§ π β π) β (π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) β (((ringLModβπ
) βs
π) LMHom
((ringLModβπ
)
βs π))) |
21 | | eqid 2732 |
. . . . . 6
β’
(((ringLModβπ
)
βs π) βΎs π΅) = (((ringLModβπ
) βs π) βΎs π΅) |
22 | 5, 21 | reslmhm 20662 |
. . . . 5
β’ (((π₯ β
(Baseβ((ringLModβπ
) βs π)) β¦ (π₯ βΎ π)) β (((ringLModβπ
) βs
π) LMHom
((ringLModβπ
)
βs π)) β§ π΅ β (LSubSpβ((ringLModβπ
) βs
π))) β ((π₯ β
(Baseβ((ringLModβπ
) βs π)) β¦ (π₯ βΎ π)) βΎ π΅) β ((((ringLModβπ
) βs
π) βΎs
π΅) LMHom
((ringLModβπ
)
βs π))) |
23 | 20, 7, 22 | syl2anc 584 |
. . . 4
β’ ((π
β Ring β§ π β π β§ π β π) β ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) β ((((ringLModβπ
) βs
π) βΎs
π΅) LMHom
((ringLModβπ
)
βs π))) |
24 | 14 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π
β Ring β§ π β π β§ π β π) β (ringLModβπ
) β LMod) |
25 | | simp3 1138 |
. . . . . . 7
β’ ((π
β Ring β§ π β π β§ π β π) β π β π) |
26 | 2, 25 | ssexd 5324 |
. . . . . 6
β’ ((π
β Ring β§ π β π β§ π β π) β π β V) |
27 | 16 | pwslmod 20580 |
. . . . . 6
β’
(((ringLModβπ
)
β LMod β§ π β
V) β ((ringLModβπ
) βs π) β LMod) |
28 | 24, 26, 27 | syl2anc 584 |
. . . . 5
β’ ((π
β Ring β§ π β π β§ π β π) β ((ringLModβπ
) βs π) β LMod) |
29 | | frlmsplit2.z |
. . . . . . 7
β’ π = (π
freeLMod π) |
30 | | frlmsplit2.c |
. . . . . . 7
β’ πΆ = (Baseβπ) |
31 | | eqid 2732 |
. . . . . . 7
β’
(LSubSpβ((ringLModβπ
) βs π)) =
(LSubSpβ((ringLModβπ
) βs π)) |
32 | 29, 30, 31 | frlmlss 21305 |
. . . . . 6
β’ ((π
β Ring β§ π β V) β πΆ β
(LSubSpβ((ringLModβπ
) βs π))) |
33 | 1, 26, 32 | syl2anc 584 |
. . . . 5
β’ ((π
β Ring β§ π β π β§ π β π) β πΆ β (LSubSpβ((ringLModβπ
) βs
π))) |
34 | 11 | rneqd 5937 |
. . . . . 6
β’ ((π
β Ring β§ π β π β§ π β π) β ran ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) = ran (π₯ β π΅ β¦ (π₯ βΎ π))) |
35 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(Baseβπ
) =
(Baseβπ
) |
36 | 3, 35, 4 | frlmbasf 21314 |
. . . . . . . . . . . 12
β’ ((π β π β§ π₯ β π΅) β π₯:πβΆ(Baseβπ
)) |
37 | 2, 36 | sylan 580 |
. . . . . . . . . . 11
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β π₯:πβΆ(Baseβπ
)) |
38 | | simpl3 1193 |
. . . . . . . . . . 11
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β π β π) |
39 | 37, 38 | fssresd 6758 |
. . . . . . . . . 10
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β (π₯ βΎ π):πβΆ(Baseβπ
)) |
40 | | fvex 6904 |
. . . . . . . . . . . 12
β’
(Baseβπ
)
β V |
41 | | elmapg 8832 |
. . . . . . . . . . . 12
β’
(((Baseβπ
)
β V β§ π β V)
β ((π₯ βΎ π) β ((Baseβπ
) βm π) β (π₯ βΎ π):πβΆ(Baseβπ
))) |
42 | 40, 26, 41 | sylancr 587 |
. . . . . . . . . . 11
β’ ((π
β Ring β§ π β π β§ π β π) β ((π₯ βΎ π) β ((Baseβπ
) βm π) β (π₯ βΎ π):πβΆ(Baseβπ
))) |
43 | 42 | adantr 481 |
. . . . . . . . . 10
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β ((π₯ βΎ π) β ((Baseβπ
) βm π) β (π₯ βΎ π):πβΆ(Baseβπ
))) |
44 | 39, 43 | mpbird 256 |
. . . . . . . . 9
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β (π₯ βΎ π) β ((Baseβπ
) βm π)) |
45 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβπ
) = (0gβπ
) |
46 | 3, 45, 4 | frlmbasfsupp 21312 |
. . . . . . . . . . 11
β’ ((π β π β§ π₯ β π΅) β π₯ finSupp (0gβπ
)) |
47 | 2, 46 | sylan 580 |
. . . . . . . . . 10
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β π₯ finSupp (0gβπ
)) |
48 | | fvexd 6906 |
. . . . . . . . . 10
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β (0gβπ
) β V) |
49 | 47, 48 | fsuppres 9387 |
. . . . . . . . 9
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β (π₯ βΎ π) finSupp (0gβπ
)) |
50 | 29, 35, 45, 30 | frlmelbas 21310 |
. . . . . . . . . . 11
β’ ((π
β Ring β§ π β V) β ((π₯ βΎ π) β πΆ β ((π₯ βΎ π) β ((Baseβπ
) βm π) β§ (π₯ βΎ π) finSupp (0gβπ
)))) |
51 | 1, 26, 50 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β π β§ π β π) β ((π₯ βΎ π) β πΆ β ((π₯ βΎ π) β ((Baseβπ
) βm π) β§ (π₯ βΎ π) finSupp (0gβπ
)))) |
52 | 51 | adantr 481 |
. . . . . . . . 9
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β ((π₯ βΎ π) β πΆ β ((π₯ βΎ π) β ((Baseβπ
) βm π) β§ (π₯ βΎ π) finSupp (0gβπ
)))) |
53 | 44, 49, 52 | mpbir2and 711 |
. . . . . . . 8
β’ (((π
β Ring β§ π β π β§ π β π) β§ π₯ β π΅) β (π₯ βΎ π) β πΆ) |
54 | 53 | fmpttd 7114 |
. . . . . . 7
β’ ((π
β Ring β§ π β π β§ π β π) β (π₯ β π΅ β¦ (π₯ βΎ π)):π΅βΆπΆ) |
55 | 54 | frnd 6725 |
. . . . . 6
β’ ((π
β Ring β§ π β π β§ π β π) β ran (π₯ β π΅ β¦ (π₯ βΎ π)) β πΆ) |
56 | 34, 55 | eqsstrd 4020 |
. . . . 5
β’ ((π
β Ring β§ π β π β§ π β π) β ran ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) β πΆ) |
57 | | eqid 2732 |
. . . . . 6
β’
(((ringLModβπ
)
βs π) βΎs πΆ) = (((ringLModβπ
) βs π) βΎs πΆ) |
58 | 57, 31 | reslmhm2b 20664 |
. . . . 5
β’
((((ringLModβπ
) βs π) β LMod β§ πΆ β
(LSubSpβ((ringLModβπ
) βs π)) β§ ran ((π₯ β
(Baseβ((ringLModβπ
) βs π)) β¦ (π₯ βΎ π)) βΎ π΅) β πΆ) β (((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) β ((((ringLModβπ
) βs
π) βΎs
π΅) LMHom
((ringLModβπ
)
βs π)) β ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) β ((((ringLModβπ
) βs
π) βΎs
π΅) LMHom
(((ringLModβπ
)
βs π) βΎs πΆ)))) |
59 | 28, 33, 56, 58 | syl3anc 1371 |
. . . 4
β’ ((π
β Ring β§ π β π β§ π β π) β (((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) β ((((ringLModβπ
) βs
π) βΎs
π΅) LMHom
((ringLModβπ
)
βs π)) β ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) β ((((ringLModβπ
) βs
π) βΎs
π΅) LMHom
(((ringLModβπ
)
βs π) βΎs πΆ)))) |
60 | 23, 59 | mpbid 231 |
. . 3
β’ ((π
β Ring β§ π β π β§ π β π) β ((π₯ β (Baseβ((ringLModβπ
) βs
π)) β¦ (π₯ βΎ π)) βΎ π΅) β ((((ringLModβπ
) βs
π) βΎs
π΅) LMHom
(((ringLModβπ
)
βs π) βΎs πΆ))) |
61 | 13, 60 | eqeltrrd 2834 |
. 2
β’ ((π
β Ring β§ π β π β§ π β π) β πΉ β ((((ringLModβπ
) βs π) βΎs π΅) LMHom (((ringLModβπ
) βs
π) βΎs
πΆ))) |
62 | 3, 4 | frlmpws 21304 |
. . . 4
β’ ((π
β Ring β§ π β π) β π = (((ringLModβπ
) βs π) βΎs π΅)) |
63 | 1, 2, 62 | syl2anc 584 |
. . 3
β’ ((π
β Ring β§ π β π β§ π β π) β π = (((ringLModβπ
) βs π) βΎs π΅)) |
64 | 29, 30 | frlmpws 21304 |
. . . 4
β’ ((π
β Ring β§ π β V) β π = (((ringLModβπ
) βs
π) βΎs
πΆ)) |
65 | 1, 26, 64 | syl2anc 584 |
. . 3
β’ ((π
β Ring β§ π β π β§ π β π) β π = (((ringLModβπ
) βs π) βΎs πΆ)) |
66 | 63, 65 | oveq12d 7426 |
. 2
β’ ((π
β Ring β§ π β π β§ π β π) β (π LMHom π) = ((((ringLModβπ
) βs π) βΎs π΅) LMHom (((ringLModβπ
) βs
π) βΎs
πΆ))) |
67 | 61, 66 | eleqtrrd 2836 |
1
β’ ((π
β Ring β§ π β π β§ π β π) β πΉ β (π LMHom π)) |