MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsplit2 Structured version   Visualization version   GIF version

Theorem frlmsplit2 20990
Description: Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmsplit2.y 𝑌 = (𝑅 freeLMod 𝑈)
frlmsplit2.z 𝑍 = (𝑅 freeLMod 𝑉)
frlmsplit2.b 𝐵 = (Base‘𝑌)
frlmsplit2.c 𝐶 = (Base‘𝑍)
frlmsplit2.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
frlmsplit2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem frlmsplit2
StepHypRef Expression
1 simp1 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑅 ∈ Ring)
2 simp2 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
3 frlmsplit2.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝑈)
4 frlmsplit2.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2738 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))
63, 4, 5frlmlss 20968 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
71, 2, 6syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
8 eqid 2738 . . . . . 6 (Base‘((ringLMod‘𝑅) ↑s 𝑈)) = (Base‘((ringLMod‘𝑅) ↑s 𝑈))
98, 5lssss 20208 . . . . 5 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)))
10 resmpt 5938 . . . . 5 (𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
117, 9, 103syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
12 frlmsplit2.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
1311, 12eqtr4di 2796 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = 𝐹)
14 rlmlmod 20485 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
15 eqid 2738 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑈) = ((ringLMod‘𝑅) ↑s 𝑈)
16 eqid 2738 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑉) = ((ringLMod‘𝑅) ↑s 𝑉)
17 eqid 2738 . . . . . . 7 (Base‘((ringLMod‘𝑅) ↑s 𝑉)) = (Base‘((ringLMod‘𝑅) ↑s 𝑉))
18 eqid 2738 . . . . . . 7 (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) = (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉))
1915, 16, 8, 17, 18pwssplit3 20333 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2014, 19syl3an1 1162 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
21 eqid 2738 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)
225, 21reslmhm 20324 . . . . 5 (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2320, 7, 22syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
24143ad2ant1 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (ringLMod‘𝑅) ∈ LMod)
25 simp3 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
262, 25ssexd 5246 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
2716pwslmod 20242 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑉 ∈ V) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
2824, 26, 27syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
29 frlmsplit2.z . . . . . . 7 𝑍 = (𝑅 freeLMod 𝑉)
30 frlmsplit2.c . . . . . . 7 𝐶 = (Base‘𝑍)
31 eqid 2738 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉))
3229, 30, 31frlmlss 20968 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
331, 26, 32syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
3411rneqd 5840 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝑉)))
35 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
363, 35, 4frlmbasf 20977 . . . . . . . . . . . 12 ((𝑈𝑋𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
372, 36sylan 580 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
38 simpl3 1192 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑉𝑈)
3937, 38fssresd 6633 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉):𝑉⟶(Base‘𝑅))
40 fvex 6779 . . . . . . . . . . . 12 (Base‘𝑅) ∈ V
41 elmapg 8615 . . . . . . . . . . . 12 (((Base‘𝑅) ∈ V ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4240, 26, 41sylancr 587 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4342adantr 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4439, 43mpbird 256 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉))
45 eqid 2738 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
463, 45, 4frlmbasfsupp 20975 . . . . . . . . . . 11 ((𝑈𝑋𝑥𝐵) → 𝑥 finSupp (0g𝑅))
472, 46sylan 580 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥 finSupp (0g𝑅))
48 fvexd 6781 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (0g𝑅) ∈ V)
4947, 48fsuppres 9140 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) finSupp (0g𝑅))
5029, 35, 45, 30frlmelbas 20973 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
511, 26, 50syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5251adantr 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5344, 49, 52mpbir2and 710 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ 𝐶)
5453fmpttd 6981 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥𝐵 ↦ (𝑥𝑉)):𝐵𝐶)
5554frnd 6600 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran (𝑥𝐵 ↦ (𝑥𝑉)) ⊆ 𝐶)
5634, 55eqsstrd 3958 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶)
57 eqid 2738 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶) = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)
5857, 31reslmhm2b 20326 . . . . 5 ((((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) ∧ ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
5928, 33, 56, 58syl3anc 1370 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
6023, 59mpbid 231 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6113, 60eqeltrrd 2840 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
623, 4frlmpws 20967 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
631, 2, 62syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
6429, 30frlmpws 20967 . . . 4 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
651, 26, 64syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
6663, 65oveq12d 7285 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑌 LMHom 𝑍) = ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6761, 66eleqtrrd 2842 1 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3429  wss 3886   class class class wbr 5073  cmpt 5156  ran crn 5585  cres 5586  wf 6422  cfv 6426  (class class class)co 7267  m cmap 8602   finSupp cfsupp 9115  Basecbs 16922  s cress 16951  0gc0g 17160  s cpws 17167  Ringcrg 19793  LModclmod 20133  LSubSpclss 20203   LMHom clmhm 20291  ringLModcrglmod 20441   freeLMod cfrlm 20963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-sup 9188  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-fz 13250  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-hom 16996  df-cco 16997  df-0g 17162  df-prds 17168  df-pws 17170  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-submnd 18441  df-grp 18590  df-minusg 18591  df-sbg 18592  df-subg 18762  df-ghm 18842  df-mgp 19731  df-ur 19748  df-ring 19795  df-subrg 20032  df-lmod 20135  df-lss 20204  df-lmhm 20294  df-sra 20444  df-rgmod 20445  df-dsmm 20949  df-frlm 20964
This theorem is referenced by:  frlmsslss  20991
  Copyright terms: Public domain W3C validator