Proof of Theorem frlmsplit2
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑅 ∈ Ring) |
| 2 | | simp2 1137 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑋) |
| 3 | | frlmsplit2.y |
. . . . . . 7
⊢ 𝑌 = (𝑅 freeLMod 𝑈) |
| 4 | | frlmsplit2.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
| 5 | | eqid 2736 |
. . . . . . 7
⊢
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) =
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) |
| 6 | 3, 4, 5 | frlmlss 21772 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝑈))) |
| 7 | 1, 2, 6 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝑈))) |
| 8 | | eqid 2736 |
. . . . . 6
⊢
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) =
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) |
| 9 | 8, 5 | lssss 20935 |
. . . . 5
⊢ (𝐵 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s
𝑈))) |
| 10 | | resmpt 6054 |
. . . . 5
⊢ (𝐵 ⊆
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉))) |
| 11 | 7, 9, 10 | 3syl 18 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉))) |
| 12 | | frlmsplit2.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
| 13 | 11, 12 | eqtr4di 2794 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) = 𝐹) |
| 14 | | rlmlmod 21211 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(ringLMod‘𝑅) ∈
LMod) |
| 15 | | eqid 2736 |
. . . . . . 7
⊢
((ringLMod‘𝑅)
↑s 𝑈) = ((ringLMod‘𝑅) ↑s 𝑈) |
| 16 | | eqid 2736 |
. . . . . . 7
⊢
((ringLMod‘𝑅)
↑s 𝑉) = ((ringLMod‘𝑅) ↑s 𝑉) |
| 17 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘((ringLMod‘𝑅) ↑s 𝑉)) =
(Base‘((ringLMod‘𝑅) ↑s 𝑉)) |
| 18 | | eqid 2736 |
. . . . . . 7
⊢ (𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥 ↾ 𝑉)) = (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) |
| 19 | 15, 16, 8, 17, 18 | pwssplit3 21061 |
. . . . . 6
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝑈 ∈
𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ∈ (((ringLMod‘𝑅) ↑s
𝑈) LMHom
((ringLMod‘𝑅)
↑s 𝑉))) |
| 20 | 14, 19 | syl3an1 1163 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ∈ (((ringLMod‘𝑅) ↑s
𝑈) LMHom
((ringLMod‘𝑅)
↑s 𝑉))) |
| 21 | | eqid 2736 |
. . . . . 6
⊢
(((ringLMod‘𝑅)
↑s 𝑈) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) |
| 22 | 5, 21 | reslmhm 21052 |
. . . . 5
⊢ (((𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥 ↾ 𝑉)) ∈ (((ringLMod‘𝑅) ↑s
𝑈) LMHom
((ringLMod‘𝑅)
↑s 𝑉)) ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝑈))) → ((𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
((ringLMod‘𝑅)
↑s 𝑉))) |
| 23 | 20, 7, 22 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
((ringLMod‘𝑅)
↑s 𝑉))) |
| 24 | 14 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (ringLMod‘𝑅) ∈ LMod) |
| 25 | | simp3 1138 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) |
| 26 | 2, 25 | ssexd 5323 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ∈ V) |
| 27 | 16 | pwslmod 20969 |
. . . . . 6
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝑉 ∈
V) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod) |
| 28 | 24, 26, 27 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod) |
| 29 | | frlmsplit2.z |
. . . . . . 7
⊢ 𝑍 = (𝑅 freeLMod 𝑉) |
| 30 | | frlmsplit2.c |
. . . . . . 7
⊢ 𝐶 = (Base‘𝑍) |
| 31 | | eqid 2736 |
. . . . . . 7
⊢
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) =
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) |
| 32 | 29, 30, 31 | frlmlss 21772 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝐶 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑉))) |
| 33 | 1, 26, 32 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝑉))) |
| 34 | 11 | rneqd 5948 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) = ran (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉))) |
| 35 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 36 | 3, 35, 4 | frlmbasf 21781 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑋 ∧ 𝑥 ∈ 𝐵) → 𝑥:𝑈⟶(Base‘𝑅)) |
| 37 | 2, 36 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝑈⟶(Base‘𝑅)) |
| 38 | | simpl3 1193 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑉 ⊆ 𝑈) |
| 39 | 37, 38 | fssresd 6774 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑅)) |
| 40 | | fvex 6918 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅)
∈ V |
| 41 | | elmapg 8880 |
. . . . . . . . . . . 12
⊢
(((Base‘𝑅)
∈ V ∧ 𝑉 ∈ V)
→ ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑅))) |
| 42 | 40, 26, 41 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑅))) |
| 43 | 42 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑅))) |
| 44 | 39, 43 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉)) |
| 45 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 46 | 3, 45, 4 | frlmbasfsupp 21779 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑋 ∧ 𝑥 ∈ 𝐵) → 𝑥 finSupp (0g‘𝑅)) |
| 47 | 2, 46 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑥 finSupp (0g‘𝑅)) |
| 48 | | fvexd 6920 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (0g‘𝑅) ∈ V) |
| 49 | 47, 48 | fsuppres 9434 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) finSupp (0g‘𝑅)) |
| 50 | 29, 35, 45, 30 | frlmelbas 21777 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥 ↾ 𝑉) finSupp (0g‘𝑅)))) |
| 51 | 1, 26, 50 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥 ↾ 𝑉) finSupp (0g‘𝑅)))) |
| 52 | 51 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥 ↾ 𝑉) finSupp (0g‘𝑅)))) |
| 53 | 44, 49, 52 | mpbir2and 713 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) ∈ 𝐶) |
| 54 | 53 | fmpttd 7134 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)):𝐵⟶𝐶) |
| 55 | 54 | frnd 6743 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ran (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⊆ 𝐶) |
| 56 | 34, 55 | eqsstrd 4017 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ⊆ 𝐶) |
| 57 | | eqid 2736 |
. . . . . 6
⊢
(((ringLMod‘𝑅)
↑s 𝑉) ↾s 𝐶) = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶) |
| 58 | 57, 31 | reslmhm2b 21054 |
. . . . 5
⊢
((((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod ∧ 𝐶 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) ∧ ran ((𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ⊆ 𝐶) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
((ringLMod‘𝑅)
↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
(((ringLMod‘𝑅)
↑s 𝑉) ↾s 𝐶)))) |
| 59 | 28, 33, 56, 58 | syl3anc 1372 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
((ringLMod‘𝑅)
↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
(((ringLMod‘𝑅)
↑s 𝑉) ↾s 𝐶)))) |
| 60 | 23, 59 | mpbid 232 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
(((ringLMod‘𝑅)
↑s 𝑉) ↾s 𝐶))) |
| 61 | 13, 60 | eqeltrrd 2841 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s
𝑉) ↾s
𝐶))) |
| 62 | 3, 4 | frlmpws 21771 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)) |
| 63 | 1, 2, 62 | syl2anc 584 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)) |
| 64 | 29, 30 | frlmpws 21771 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝑍 = (((ringLMod‘𝑅) ↑s
𝑉) ↾s
𝐶)) |
| 65 | 1, 26, 64 | syl2anc 584 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)) |
| 66 | 63, 65 | oveq12d 7450 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑌 LMHom 𝑍) = ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s
𝑉) ↾s
𝐶))) |
| 67 | 61, 66 | eleqtrrd 2843 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍)) |