MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsplit2 Structured version   Visualization version   GIF version

Theorem frlmsplit2 20912
Description: Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmsplit2.y 𝑌 = (𝑅 freeLMod 𝑈)
frlmsplit2.z 𝑍 = (𝑅 freeLMod 𝑉)
frlmsplit2.b 𝐵 = (Base‘𝑌)
frlmsplit2.c 𝐶 = (Base‘𝑍)
frlmsplit2.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
frlmsplit2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem frlmsplit2
StepHypRef Expression
1 simp1 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑅 ∈ Ring)
2 simp2 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
3 frlmsplit2.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝑈)
4 frlmsplit2.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2820 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))
63, 4, 5frlmlss 20890 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
71, 2, 6syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
8 eqid 2820 . . . . . 6 (Base‘((ringLMod‘𝑅) ↑s 𝑈)) = (Base‘((ringLMod‘𝑅) ↑s 𝑈))
98, 5lssss 19703 . . . . 5 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)))
10 resmpt 5898 . . . . 5 (𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
117, 9, 103syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
12 frlmsplit2.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
1311, 12syl6eqr 2873 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = 𝐹)
14 rlmlmod 19972 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
15 eqid 2820 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑈) = ((ringLMod‘𝑅) ↑s 𝑈)
16 eqid 2820 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑉) = ((ringLMod‘𝑅) ↑s 𝑉)
17 eqid 2820 . . . . . . 7 (Base‘((ringLMod‘𝑅) ↑s 𝑉)) = (Base‘((ringLMod‘𝑅) ↑s 𝑉))
18 eqid 2820 . . . . . . 7 (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) = (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉))
1915, 16, 8, 17, 18pwssplit3 19828 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2014, 19syl3an1 1158 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
21 eqid 2820 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)
225, 21reslmhm 19819 . . . . 5 (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2320, 7, 22syl2anc 586 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
24143ad2ant1 1128 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (ringLMod‘𝑅) ∈ LMod)
25 simp3 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
262, 25ssexd 5221 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
2716pwslmod 19737 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑉 ∈ V) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
2824, 26, 27syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
29 frlmsplit2.z . . . . . . 7 𝑍 = (𝑅 freeLMod 𝑉)
30 frlmsplit2.c . . . . . . 7 𝐶 = (Base‘𝑍)
31 eqid 2820 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉))
3229, 30, 31frlmlss 20890 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
331, 26, 32syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
3411rneqd 5801 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝑉)))
35 eqid 2820 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
363, 35, 4frlmbasf 20899 . . . . . . . . . . . 12 ((𝑈𝑋𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
372, 36sylan 582 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
38 simpl3 1188 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑉𝑈)
3937, 38fssresd 6538 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉):𝑉⟶(Base‘𝑅))
40 fvex 6676 . . . . . . . . . . . 12 (Base‘𝑅) ∈ V
41 elmapg 8412 . . . . . . . . . . . 12 (((Base‘𝑅) ∈ V ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4240, 26, 41sylancr 589 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4342adantr 483 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4439, 43mpbird 259 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉))
45 eqid 2820 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
463, 45, 4frlmbasfsupp 20897 . . . . . . . . . . 11 ((𝑈𝑋𝑥𝐵) → 𝑥 finSupp (0g𝑅))
472, 46sylan 582 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥 finSupp (0g𝑅))
48 fvexd 6678 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (0g𝑅) ∈ V)
4947, 48fsuppres 8851 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) finSupp (0g𝑅))
5029, 35, 45, 30frlmelbas 20895 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
511, 26, 50syl2anc 586 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5251adantr 483 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5344, 49, 52mpbir2and 711 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ 𝐶)
5453fmpttd 6872 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥𝐵 ↦ (𝑥𝑉)):𝐵𝐶)
5554frnd 6514 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran (𝑥𝐵 ↦ (𝑥𝑉)) ⊆ 𝐶)
5634, 55eqsstrd 3998 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶)
57 eqid 2820 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶) = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)
5857, 31reslmhm2b 19821 . . . . 5 ((((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) ∧ ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
5928, 33, 56, 58syl3anc 1366 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
6023, 59mpbid 234 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6113, 60eqeltrrd 2913 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
623, 4frlmpws 20889 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
631, 2, 62syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
6429, 30frlmpws 20889 . . . 4 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
651, 26, 64syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
6663, 65oveq12d 7167 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑌 LMHom 𝑍) = ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6761, 66eleqtrrd 2915 1 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  Vcvv 3491  wss 3929   class class class wbr 5059  cmpt 5139  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7149  m cmap 8399   finSupp cfsupp 8826  Basecbs 16478  s cress 16479  0gc0g 16708  s cpws 16715  Ringcrg 19292  LModclmod 19629  LSubSpclss 19698   LMHom clmhm 19786  ringLModcrglmod 19936   freeLMod cfrlm 20885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-hom 16584  df-cco 16585  df-0g 16710  df-prds 16716  df-pws 16718  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-ghm 18351  df-mgp 19235  df-ur 19247  df-ring 19294  df-subrg 19528  df-lmod 19631  df-lss 19699  df-lmhm 19789  df-sra 19939  df-rgmod 19940  df-dsmm 20871  df-frlm 20886
This theorem is referenced by:  frlmsslss  20913
  Copyright terms: Public domain W3C validator