Proof of Theorem frlmsplit2
Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑅 ∈ Ring) |
2 | | simp2 1137 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑋) |
3 | | frlmsplit2.y |
. . . . . . 7
⊢ 𝑌 = (𝑅 freeLMod 𝑈) |
4 | | frlmsplit2.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
5 | | eqid 2736 |
. . . . . . 7
⊢
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) =
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) |
6 | 3, 4, 5 | frlmlss 21003 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝑈))) |
7 | 1, 2, 6 | syl2anc 585 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝑈))) |
8 | | eqid 2736 |
. . . . . 6
⊢
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) =
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) |
9 | 8, 5 | lssss 20243 |
. . . . 5
⊢ (𝐵 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s
𝑈))) |
10 | | resmpt 5957 |
. . . . 5
⊢ (𝐵 ⊆
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉))) |
11 | 7, 9, 10 | 3syl 18 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉))) |
12 | | frlmsplit2.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
13 | 11, 12 | eqtr4di 2794 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) = 𝐹) |
14 | | rlmlmod 20520 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(ringLMod‘𝑅) ∈
LMod) |
15 | | eqid 2736 |
. . . . . . 7
⊢
((ringLMod‘𝑅)
↑s 𝑈) = ((ringLMod‘𝑅) ↑s 𝑈) |
16 | | eqid 2736 |
. . . . . . 7
⊢
((ringLMod‘𝑅)
↑s 𝑉) = ((ringLMod‘𝑅) ↑s 𝑉) |
17 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘((ringLMod‘𝑅) ↑s 𝑉)) =
(Base‘((ringLMod‘𝑅) ↑s 𝑉)) |
18 | | eqid 2736 |
. . . . . . 7
⊢ (𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥 ↾ 𝑉)) = (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) |
19 | 15, 16, 8, 17, 18 | pwssplit3 20368 |
. . . . . 6
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝑈 ∈
𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ∈ (((ringLMod‘𝑅) ↑s
𝑈) LMHom
((ringLMod‘𝑅)
↑s 𝑉))) |
20 | 14, 19 | syl3an1 1163 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ∈ (((ringLMod‘𝑅) ↑s
𝑈) LMHom
((ringLMod‘𝑅)
↑s 𝑉))) |
21 | | eqid 2736 |
. . . . . 6
⊢
(((ringLMod‘𝑅)
↑s 𝑈) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) |
22 | 5, 21 | reslmhm 20359 |
. . . . 5
⊢ (((𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥 ↾ 𝑉)) ∈ (((ringLMod‘𝑅) ↑s
𝑈) LMHom
((ringLMod‘𝑅)
↑s 𝑉)) ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝑈))) → ((𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
((ringLMod‘𝑅)
↑s 𝑉))) |
23 | 20, 7, 22 | syl2anc 585 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
((ringLMod‘𝑅)
↑s 𝑉))) |
24 | 14 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (ringLMod‘𝑅) ∈ LMod) |
25 | | simp3 1138 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) |
26 | 2, 25 | ssexd 5257 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ∈ V) |
27 | 16 | pwslmod 20277 |
. . . . . 6
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝑉 ∈
V) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod) |
28 | 24, 26, 27 | syl2anc 585 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod) |
29 | | frlmsplit2.z |
. . . . . . 7
⊢ 𝑍 = (𝑅 freeLMod 𝑉) |
30 | | frlmsplit2.c |
. . . . . . 7
⊢ 𝐶 = (Base‘𝑍) |
31 | | eqid 2736 |
. . . . . . 7
⊢
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) =
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) |
32 | 29, 30, 31 | frlmlss 21003 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝐶 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑉))) |
33 | 1, 26, 32 | syl2anc 585 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝑉))) |
34 | 11 | rneqd 5859 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) = ran (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉))) |
35 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
36 | 3, 35, 4 | frlmbasf 21012 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ 𝑋 ∧ 𝑥 ∈ 𝐵) → 𝑥:𝑈⟶(Base‘𝑅)) |
37 | 2, 36 | sylan 581 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝑈⟶(Base‘𝑅)) |
38 | | simpl3 1193 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑉 ⊆ 𝑈) |
39 | 37, 38 | fssresd 6671 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑅)) |
40 | | fvex 6817 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅)
∈ V |
41 | | elmapg 8659 |
. . . . . . . . . . . 12
⊢
(((Base‘𝑅)
∈ V ∧ 𝑉 ∈ V)
→ ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑅))) |
42 | 40, 26, 41 | sylancr 588 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑅))) |
43 | 42 | adantr 482 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑅))) |
44 | 39, 43 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉)) |
45 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
46 | 3, 45, 4 | frlmbasfsupp 21010 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑋 ∧ 𝑥 ∈ 𝐵) → 𝑥 finSupp (0g‘𝑅)) |
47 | 2, 46 | sylan 581 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑥 finSupp (0g‘𝑅)) |
48 | | fvexd 6819 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (0g‘𝑅) ∈ V) |
49 | 47, 48 | fsuppres 9197 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) finSupp (0g‘𝑅)) |
50 | 29, 35, 45, 30 | frlmelbas 21008 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥 ↾ 𝑉) finSupp (0g‘𝑅)))) |
51 | 1, 26, 50 | syl2anc 585 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥 ↾ 𝑉) finSupp (0g‘𝑅)))) |
52 | 51 | adantr 482 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ ((𝑥 ↾ 𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥 ↾ 𝑉) finSupp (0g‘𝑅)))) |
53 | 44, 49, 52 | mpbir2and 711 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) ∈ 𝐶) |
54 | 53 | fmpttd 7021 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)):𝐵⟶𝐶) |
55 | 54 | frnd 6638 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ran (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⊆ 𝐶) |
56 | 34, 55 | eqsstrd 3964 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ⊆ 𝐶) |
57 | | eqid 2736 |
. . . . . 6
⊢
(((ringLMod‘𝑅)
↑s 𝑉) ↾s 𝐶) = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶) |
58 | 57, 31 | reslmhm2b 20361 |
. . . . 5
⊢
((((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod ∧ 𝐶 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) ∧ ran ((𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ⊆ 𝐶) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
((ringLMod‘𝑅)
↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
(((ringLMod‘𝑅)
↑s 𝑉) ↾s 𝐶)))) |
59 | 28, 33, 56, 58 | syl3anc 1371 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
((ringLMod‘𝑅)
↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
(((ringLMod‘𝑅)
↑s 𝑉) ↾s 𝐶)))) |
60 | 23, 59 | mpbid 231 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝑈)) ↦ (𝑥 ↾ 𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s
𝑈) ↾s
𝐵) LMHom
(((ringLMod‘𝑅)
↑s 𝑉) ↾s 𝐶))) |
61 | 13, 60 | eqeltrrd 2838 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s
𝑉) ↾s
𝐶))) |
62 | 3, 4 | frlmpws 21002 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)) |
63 | 1, 2, 62 | syl2anc 585 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)) |
64 | 29, 30 | frlmpws 21002 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝑍 = (((ringLMod‘𝑅) ↑s
𝑉) ↾s
𝐶)) |
65 | 1, 26, 64 | syl2anc 585 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)) |
66 | 63, 65 | oveq12d 7325 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑌 LMHom 𝑍) = ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s
𝑉) ↾s
𝐶))) |
67 | 61, 66 | eleqtrrd 2840 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍)) |