MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsplit2 Structured version   Visualization version   GIF version

Theorem frlmsplit2 21682
Description: Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmsplit2.y 𝑌 = (𝑅 freeLMod 𝑈)
frlmsplit2.z 𝑍 = (𝑅 freeLMod 𝑉)
frlmsplit2.b 𝐵 = (Base‘𝑌)
frlmsplit2.c 𝐶 = (Base‘𝑍)
frlmsplit2.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
frlmsplit2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem frlmsplit2
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑅 ∈ Ring)
2 simp2 1137 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
3 frlmsplit2.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝑈)
4 frlmsplit2.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2729 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))
63, 4, 5frlmlss 21660 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
71, 2, 6syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
8 eqid 2729 . . . . . 6 (Base‘((ringLMod‘𝑅) ↑s 𝑈)) = (Base‘((ringLMod‘𝑅) ↑s 𝑈))
98, 5lssss 20842 . . . . 5 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)))
10 resmpt 6008 . . . . 5 (𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
117, 9, 103syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
12 frlmsplit2.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
1311, 12eqtr4di 2782 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = 𝐹)
14 rlmlmod 21110 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
15 eqid 2729 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑈) = ((ringLMod‘𝑅) ↑s 𝑈)
16 eqid 2729 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑉) = ((ringLMod‘𝑅) ↑s 𝑉)
17 eqid 2729 . . . . . . 7 (Base‘((ringLMod‘𝑅) ↑s 𝑉)) = (Base‘((ringLMod‘𝑅) ↑s 𝑉))
18 eqid 2729 . . . . . . 7 (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) = (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉))
1915, 16, 8, 17, 18pwssplit3 20968 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2014, 19syl3an1 1163 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
21 eqid 2729 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)
225, 21reslmhm 20959 . . . . 5 (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2320, 7, 22syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
24143ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (ringLMod‘𝑅) ∈ LMod)
25 simp3 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
262, 25ssexd 5279 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
2716pwslmod 20876 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑉 ∈ V) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
2824, 26, 27syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
29 frlmsplit2.z . . . . . . 7 𝑍 = (𝑅 freeLMod 𝑉)
30 frlmsplit2.c . . . . . . 7 𝐶 = (Base‘𝑍)
31 eqid 2729 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉))
3229, 30, 31frlmlss 21660 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
331, 26, 32syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
3411rneqd 5902 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝑉)))
35 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
363, 35, 4frlmbasf 21669 . . . . . . . . . . . 12 ((𝑈𝑋𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
372, 36sylan 580 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
38 simpl3 1194 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑉𝑈)
3937, 38fssresd 6727 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉):𝑉⟶(Base‘𝑅))
40 fvex 6871 . . . . . . . . . . . 12 (Base‘𝑅) ∈ V
41 elmapg 8812 . . . . . . . . . . . 12 (((Base‘𝑅) ∈ V ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4240, 26, 41sylancr 587 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4342adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4439, 43mpbird 257 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉))
45 eqid 2729 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
463, 45, 4frlmbasfsupp 21667 . . . . . . . . . . 11 ((𝑈𝑋𝑥𝐵) → 𝑥 finSupp (0g𝑅))
472, 46sylan 580 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥 finSupp (0g𝑅))
48 fvexd 6873 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (0g𝑅) ∈ V)
4947, 48fsuppres 9344 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) finSupp (0g𝑅))
5029, 35, 45, 30frlmelbas 21665 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
511, 26, 50syl2anc 584 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5251adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5344, 49, 52mpbir2and 713 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ 𝐶)
5453fmpttd 7087 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥𝐵 ↦ (𝑥𝑉)):𝐵𝐶)
5554frnd 6696 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran (𝑥𝐵 ↦ (𝑥𝑉)) ⊆ 𝐶)
5634, 55eqsstrd 3981 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶)
57 eqid 2729 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶) = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)
5857, 31reslmhm2b 20961 . . . . 5 ((((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) ∧ ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
5928, 33, 56, 58syl3anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
6023, 59mpbid 232 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6113, 60eqeltrrd 2829 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
623, 4frlmpws 21659 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
631, 2, 62syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
6429, 30frlmpws 21659 . . . 4 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
651, 26, 64syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
6663, 65oveq12d 7405 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑌 LMHom 𝑍) = ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6761, 66eleqtrrd 2831 1 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799   finSupp cfsupp 9312  Basecbs 17179  s cress 17200  0gc0g 17402  s cpws 17409  Ringcrg 20142  LModclmod 20766  LSubSpclss 20837   LMHom clmhm 20926  ringLModcrglmod 21079   freeLMod cfrlm 21655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lmhm 20929  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656
This theorem is referenced by:  frlmsslss  21683
  Copyright terms: Public domain W3C validator