MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsplit2 Structured version   Visualization version   GIF version

Theorem frlmsplit2 20478
Description: Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmsplit2.y 𝑌 = (𝑅 freeLMod 𝑈)
frlmsplit2.z 𝑍 = (𝑅 freeLMod 𝑉)
frlmsplit2.b 𝐵 = (Base‘𝑌)
frlmsplit2.c 𝐶 = (Base‘𝑍)
frlmsplit2.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
frlmsplit2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem frlmsplit2
StepHypRef Expression
1 simp1 1172 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑅 ∈ Ring)
2 simp2 1173 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
3 frlmsplit2.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝑈)
4 frlmsplit2.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2824 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))
63, 4, 5frlmlss 20457 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
71, 2, 6syl2anc 581 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
8 eqid 2824 . . . . . 6 (Base‘((ringLMod‘𝑅) ↑s 𝑈)) = (Base‘((ringLMod‘𝑅) ↑s 𝑈))
98, 5lssss 19292 . . . . 5 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)))
10 resmpt 5685 . . . . 5 (𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
117, 9, 103syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
12 frlmsplit2.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
1311, 12syl6eqr 2878 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = 𝐹)
14 rlmlmod 19565 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
15 eqid 2824 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑈) = ((ringLMod‘𝑅) ↑s 𝑈)
16 eqid 2824 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑉) = ((ringLMod‘𝑅) ↑s 𝑉)
17 eqid 2824 . . . . . . 7 (Base‘((ringLMod‘𝑅) ↑s 𝑉)) = (Base‘((ringLMod‘𝑅) ↑s 𝑉))
18 eqid 2824 . . . . . . 7 (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) = (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉))
1915, 16, 8, 17, 18pwssplit3 19419 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2014, 19syl3an1 1208 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
21 eqid 2824 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)
225, 21reslmhm 19410 . . . . 5 (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2320, 7, 22syl2anc 581 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
24143ad2ant1 1169 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (ringLMod‘𝑅) ∈ LMod)
25 simp3 1174 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
262, 25ssexd 5029 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
2716pwslmod 19328 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑉 ∈ V) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
2824, 26, 27syl2anc 581 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
29 frlmsplit2.z . . . . . . 7 𝑍 = (𝑅 freeLMod 𝑉)
30 frlmsplit2.c . . . . . . 7 𝐶 = (Base‘𝑍)
31 eqid 2824 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉))
3229, 30, 31frlmlss 20457 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
331, 26, 32syl2anc 581 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
3411rneqd 5584 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝑉)))
35 eqid 2824 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
363, 35, 4frlmbasf 20466 . . . . . . . . . . . 12 ((𝑈𝑋𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
372, 36sylan 577 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
38 simpl3 1252 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑉𝑈)
3937, 38fssresd 6307 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉):𝑉⟶(Base‘𝑅))
40 fvex 6445 . . . . . . . . . . . 12 (Base‘𝑅) ∈ V
41 elmapg 8134 . . . . . . . . . . . 12 (((Base‘𝑅) ∈ V ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑𝑚 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4240, 26, 41sylancr 583 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑𝑚 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4342adantr 474 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑𝑚 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4439, 43mpbird 249 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ ((Base‘𝑅) ↑𝑚 𝑉))
45 eqid 2824 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
463, 45, 4frlmbasfsupp 20464 . . . . . . . . . . 11 ((𝑈𝑋𝑥𝐵) → 𝑥 finSupp (0g𝑅))
472, 46sylan 577 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥 finSupp (0g𝑅))
48 fvexd 6447 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (0g𝑅) ∈ V)
4947, 48fsuppres 8568 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) finSupp (0g𝑅))
5029, 35, 45, 30frlmelbas 20462 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑𝑚 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
511, 26, 50syl2anc 581 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑𝑚 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5251adantr 474 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑𝑚 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5344, 49, 52mpbir2and 706 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ 𝐶)
5453fmpttd 6633 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥𝐵 ↦ (𝑥𝑉)):𝐵𝐶)
5554frnd 6284 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran (𝑥𝐵 ↦ (𝑥𝑉)) ⊆ 𝐶)
5634, 55eqsstrd 3863 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶)
57 eqid 2824 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶) = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)
5857, 31reslmhm2b 19412 . . . . 5 ((((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) ∧ ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
5928, 33, 56, 58syl3anc 1496 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
6023, 59mpbid 224 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6113, 60eqeltrrd 2906 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
623, 4frlmpws 20456 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
631, 2, 62syl2anc 581 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
6429, 30frlmpws 20456 . . . 4 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
651, 26, 64syl2anc 581 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
6663, 65oveq12d 6922 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑌 LMHom 𝑍) = ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6761, 66eleqtrrd 2908 1 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  Vcvv 3413  wss 3797   class class class wbr 4872  cmpt 4951  ran crn 5342  cres 5343  wf 6118  cfv 6122  (class class class)co 6904  𝑚 cmap 8121   finSupp cfsupp 8543  Basecbs 16221  s cress 16222  0gc0g 16452  s cpws 16459  Ringcrg 18900  LModclmod 19218  LSubSpclss 19287   LMHom clmhm 19377  ringLModcrglmod 19529   freeLMod cfrlm 20452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-of 7156  df-om 7326  df-1st 7427  df-2nd 7428  df-supp 7559  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-map 8123  df-ixp 8175  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-fsupp 8544  df-sup 8616  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-uz 11968  df-fz 12619  df-struct 16223  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-ress 16229  df-plusg 16317  df-mulr 16318  df-sca 16320  df-vsca 16321  df-ip 16322  df-tset 16323  df-ple 16324  df-ds 16326  df-hom 16328  df-cco 16329  df-0g 16454  df-prds 16460  df-pws 16462  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-mhm 17687  df-submnd 17688  df-grp 17778  df-minusg 17779  df-sbg 17780  df-subg 17941  df-ghm 18008  df-mgp 18843  df-ur 18855  df-ring 18902  df-subrg 19133  df-lmod 19220  df-lss 19288  df-lmhm 19380  df-sra 19532  df-rgmod 19533  df-dsmm 20438  df-frlm 20453
This theorem is referenced by:  frlmsslss  20479
  Copyright terms: Public domain W3C validator