| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fucid | Structured version Visualization version GIF version | ||
| Description: The identity morphism in the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| fucid.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucid.i | ⊢ 𝐼 = (Id‘𝑄) |
| fucid.1 | ⊢ 1 = (Id‘𝐷) |
| fucid.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| fucid | ⊢ (𝜑 → (𝐼‘𝐹) = ( 1 ∘ (1st ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucid.i | . . 3 ⊢ 𝐼 = (Id‘𝑄) | |
| 2 | fucid.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 3 | fucid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | funcrcl 17772 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 6 | 5 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | 5 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | fucid.1 | . . . . 5 ⊢ 1 = (Id‘𝐷) | |
| 9 | 2, 6, 7, 8 | fuccatid 17881 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ Cat ∧ (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓))))) |
| 10 | 9 | simprd 495 | . . 3 ⊢ (𝜑 → (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓)))) |
| 11 | 1, 10 | eqtrid 2780 | . 2 ⊢ (𝜑 → 𝐼 = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓)))) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 13 | 12 | fveq2d 6832 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (1st ‘𝑓) = (1st ‘𝐹)) |
| 14 | 13 | coeq2d 5806 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ( 1 ∘ (1st ‘𝑓)) = ( 1 ∘ (1st ‘𝐹))) |
| 15 | 8 | fvexi 6842 | . . . 4 ⊢ 1 ∈ V |
| 16 | fvex 6841 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
| 17 | 15, 16 | coex 7866 | . . 3 ⊢ ( 1 ∘ (1st ‘𝐹)) ∈ V |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → ( 1 ∘ (1st ‘𝐹)) ∈ V) |
| 19 | 11, 14, 3, 18 | fvmptd 6942 | 1 ⊢ (𝜑 → (𝐼‘𝐹) = ( 1 ∘ (1st ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5174 ∘ ccom 5623 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 Catccat 17572 Idccid 17573 Func cfunc 17763 FuncCat cfuc 17854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-cat 17576 df-cid 17577 df-func 17767 df-nat 17855 df-fuc 17856 |
| This theorem is referenced by: fucsect 17884 evlfcl 18130 curfcl 18140 curfuncf 18146 curf2ndf 18155 fuco11id 49459 fucoid 49473 fucolid 49486 fucorid 49487 precofvalALT 49493 fucoppcid 49533 |
| Copyright terms: Public domain | W3C validator |