![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fucid | Structured version Visualization version GIF version |
Description: The identity morphism in the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
fucid.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
fucid.i | ⊢ 𝐼 = (Id‘𝑄) |
fucid.1 | ⊢ 1 = (Id‘𝐷) |
fucid.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
Ref | Expression |
---|---|
fucid | ⊢ (𝜑 → (𝐼‘𝐹) = ( 1 ∘ (1st ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucid.i | . . 3 ⊢ 𝐼 = (Id‘𝑄) | |
2 | fucid.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
3 | fucid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
4 | funcrcl 17809 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
6 | 5 | simpld 495 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | 5 | simprd 496 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
8 | fucid.1 | . . . . 5 ⊢ 1 = (Id‘𝐷) | |
9 | 2, 6, 7, 8 | fuccatid 17918 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ Cat ∧ (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓))))) |
10 | 9 | simprd 496 | . . 3 ⊢ (𝜑 → (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓)))) |
11 | 1, 10 | eqtrid 2784 | . 2 ⊢ (𝜑 → 𝐼 = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓)))) |
12 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
13 | 12 | fveq2d 6892 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (1st ‘𝑓) = (1st ‘𝐹)) |
14 | 13 | coeq2d 5860 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ( 1 ∘ (1st ‘𝑓)) = ( 1 ∘ (1st ‘𝐹))) |
15 | 8 | fvexi 6902 | . . . 4 ⊢ 1 ∈ V |
16 | fvex 6901 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
17 | 15, 16 | coex 7917 | . . 3 ⊢ ( 1 ∘ (1st ‘𝐹)) ∈ V |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → ( 1 ∘ (1st ‘𝐹)) ∈ V) |
19 | 11, 14, 3, 18 | fvmptd 7002 | 1 ⊢ (𝜑 → (𝐼‘𝐹) = ( 1 ∘ (1st ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ↦ cmpt 5230 ∘ ccom 5679 ‘cfv 6540 (class class class)co 7405 1st c1st 7969 Catccat 17604 Idccid 17605 Func cfunc 17800 FuncCat cfuc 17889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-hom 17217 df-cco 17218 df-cat 17608 df-cid 17609 df-func 17804 df-nat 17890 df-fuc 17891 |
This theorem is referenced by: fucsect 17921 evlfcl 18171 curfcl 18181 curfuncf 18187 curf2ndf 18196 |
Copyright terms: Public domain | W3C validator |