Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fucid | Structured version Visualization version GIF version |
Description: The identity morphism in the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
fucid.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
fucid.i | ⊢ 𝐼 = (Id‘𝑄) |
fucid.1 | ⊢ 1 = (Id‘𝐷) |
fucid.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
Ref | Expression |
---|---|
fucid | ⊢ (𝜑 → (𝐼‘𝐹) = ( 1 ∘ (1st ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucid.i | . . 3 ⊢ 𝐼 = (Id‘𝑄) | |
2 | fucid.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
3 | fucid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
4 | funcrcl 17675 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
6 | 5 | simpld 495 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | 5 | simprd 496 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) |
8 | fucid.1 | . . . . 5 ⊢ 1 = (Id‘𝐷) | |
9 | 2, 6, 7, 8 | fuccatid 17784 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ Cat ∧ (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓))))) |
10 | 9 | simprd 496 | . . 3 ⊢ (𝜑 → (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓)))) |
11 | 1, 10 | eqtrid 2788 | . 2 ⊢ (𝜑 → 𝐼 = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓)))) |
12 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
13 | 12 | fveq2d 6829 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (1st ‘𝑓) = (1st ‘𝐹)) |
14 | 13 | coeq2d 5804 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ( 1 ∘ (1st ‘𝑓)) = ( 1 ∘ (1st ‘𝐹))) |
15 | 8 | fvexi 6839 | . . . 4 ⊢ 1 ∈ V |
16 | fvex 6838 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
17 | 15, 16 | coex 7845 | . . 3 ⊢ ( 1 ∘ (1st ‘𝐹)) ∈ V |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → ( 1 ∘ (1st ‘𝐹)) ∈ V) |
19 | 11, 14, 3, 18 | fvmptd 6938 | 1 ⊢ (𝜑 → (𝐼‘𝐹) = ( 1 ∘ (1st ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5175 ∘ ccom 5624 ‘cfv 6479 (class class class)co 7337 1st c1st 7897 Catccat 17470 Idccid 17471 Func cfunc 17666 FuncCat cfuc 17755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-struct 16945 df-slot 16980 df-ndx 16992 df-base 17010 df-hom 17083 df-cco 17084 df-cat 17474 df-cid 17475 df-func 17670 df-nat 17756 df-fuc 17757 |
This theorem is referenced by: fucsect 17787 evlfcl 18037 curfcl 18047 curfuncf 18053 curf2ndf 18062 |
Copyright terms: Public domain | W3C validator |