|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fucid | Structured version Visualization version GIF version | ||
| Description: The identity morphism in the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| fucid.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | 
| fucid.i | ⊢ 𝐼 = (Id‘𝑄) | 
| fucid.1 | ⊢ 1 = (Id‘𝐷) | 
| fucid.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | 
| Ref | Expression | 
|---|---|
| fucid | ⊢ (𝜑 → (𝐼‘𝐹) = ( 1 ∘ (1st ‘𝐹))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fucid.i | . . 3 ⊢ 𝐼 = (Id‘𝑄) | |
| 2 | fucid.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 3 | fucid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | funcrcl 17908 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | 
| 6 | 5 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 7 | 5 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 8 | fucid.1 | . . . . 5 ⊢ 1 = (Id‘𝐷) | |
| 9 | 2, 6, 7, 8 | fuccatid 18017 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ Cat ∧ (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓))))) | 
| 10 | 9 | simprd 495 | . . 3 ⊢ (𝜑 → (Id‘𝑄) = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓)))) | 
| 11 | 1, 10 | eqtrid 2789 | . 2 ⊢ (𝜑 → 𝐼 = (𝑓 ∈ (𝐶 Func 𝐷) ↦ ( 1 ∘ (1st ‘𝑓)))) | 
| 12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 13 | 12 | fveq2d 6910 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (1st ‘𝑓) = (1st ‘𝐹)) | 
| 14 | 13 | coeq2d 5873 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ( 1 ∘ (1st ‘𝑓)) = ( 1 ∘ (1st ‘𝐹))) | 
| 15 | 8 | fvexi 6920 | . . . 4 ⊢ 1 ∈ V | 
| 16 | fvex 6919 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
| 17 | 15, 16 | coex 7952 | . . 3 ⊢ ( 1 ∘ (1st ‘𝐹)) ∈ V | 
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → ( 1 ∘ (1st ‘𝐹)) ∈ V) | 
| 19 | 11, 14, 3, 18 | fvmptd 7023 | 1 ⊢ (𝜑 → (𝐼‘𝐹) = ( 1 ∘ (1st ‘𝐹))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ↦ cmpt 5225 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 1st c1st 8012 Catccat 17707 Idccid 17708 Func cfunc 17899 FuncCat cfuc 17990 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-hom 17321 df-cco 17322 df-cat 17711 df-cid 17712 df-func 17903 df-nat 17991 df-fuc 17992 | 
| This theorem is referenced by: fucsect 18020 evlfcl 18267 curfcl 18277 curfuncf 18283 curf2ndf 18292 fuco11id 49029 fucoid 49043 fucolid 49056 fucorid 49057 precofvalALT 49063 | 
| Copyright terms: Public domain | W3C validator |