| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uncfcl | Structured version Visualization version GIF version | ||
| Description: The uncurry operation takes a functor 𝐹:𝐶⟶(𝐷⟶𝐸) to a functor uncurryF (𝐹):𝐶 × 𝐷⟶𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| Ref | Expression |
|---|---|
| uncfval.g | ⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) |
| uncfval.c | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| uncfval.d | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| uncfval.f | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
| Ref | Expression |
|---|---|
| uncfcl | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfval.g | . . 3 ⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) | |
| 2 | uncfval.c | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 3 | uncfval.d | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 4 | uncfval.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) | |
| 5 | 1, 2, 3, 4 | uncfval 18202 | . 2 ⊢ (𝜑 → 𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)))) |
| 6 | eqid 2730 | . . . 4 ⊢ ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) = ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) | |
| 7 | eqid 2730 | . . . 4 ⊢ ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷) | |
| 8 | eqid 2730 | . . . . . 6 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 9 | funcrcl 17832 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) | |
| 10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) |
| 11 | 10 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 12 | eqid 2730 | . . . . . 6 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
| 13 | 8, 11, 2, 12 | 1stfcl 18165 | . . . . 5 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
| 14 | 13, 4 | cofucl 17857 | . . . 4 ⊢ (𝜑 → (𝐺 ∘func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸))) |
| 15 | eqid 2730 | . . . . 5 ⊢ (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷) | |
| 16 | 8, 11, 2, 15 | 2ndfcl 18166 | . . . 4 ⊢ (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷)) |
| 17 | 6, 7, 14, 16 | prfcl 18171 | . . 3 ⊢ (𝜑 → ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷))) |
| 18 | eqid 2730 | . . . 4 ⊢ (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸) | |
| 19 | eqid 2730 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 20 | 18, 19, 2, 3 | evlfcl 18190 | . . 3 ⊢ (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸)) |
| 21 | 17, 20 | cofucl 17857 | . 2 ⊢ (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷))) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| 22 | 5, 21 | eqeltrd 2829 | 1 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 〈“cs3 14815 Catccat 17632 Func cfunc 17823 ∘func ccofu 17825 FuncCat cfuc 17914 ×c cxpc 18136 1stF c1stf 18137 2ndF c2ndf 18138 〈,〉F cprf 18139 evalF cevlf 18177 uncurryF cuncf 18179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-func 17827 df-cofu 17829 df-nat 17915 df-fuc 17916 df-xpc 18140 df-1stf 18141 df-2ndf 18142 df-prf 18143 df-evlf 18181 df-uncf 18183 |
| This theorem is referenced by: curfuncf 18206 uncfcurf 18207 |
| Copyright terms: Public domain | W3C validator |