MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcl Structured version   Visualization version   GIF version

Theorem uncfcl 18196
Description: The uncurry operation takes a functor 𝐹:𝐶⟶(𝐷𝐸) to a functor uncurryF (𝐹):𝐶 × 𝐷𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
uncfcl (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))

Proof of Theorem uncfcl
StepHypRef Expression
1 uncfval.g . . 3 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . 3 (𝜑𝐷 ∈ Cat)
3 uncfval.d . . 3 (𝜑𝐸 ∈ Cat)
4 uncfval.f . . 3 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
51, 2, 3, 4uncfval 18195 . 2 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
6 eqid 2729 . . . 4 ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))
7 eqid 2729 . . . 4 ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷)
8 eqid 2729 . . . . . 6 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
9 funcrcl 17825 . . . . . . . 8 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
104, 9syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
1110simpld 494 . . . . . 6 (𝜑𝐶 ∈ Cat)
12 eqid 2729 . . . . . 6 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
138, 11, 2, 121stfcl 18158 . . . . 5 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
1413, 4cofucl 17850 . . . 4 (𝜑 → (𝐺func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸)))
15 eqid 2729 . . . . 5 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
168, 11, 2, 152ndfcl 18159 . . . 4 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
176, 7, 14, 16prfcl 18164 . . 3 (𝜑 → ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷)))
18 eqid 2729 . . . 4 (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸)
19 eqid 2729 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
2018, 19, 2, 3evlfcl 18183 . . 3 (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸))
2117, 20cofucl 17850 . 2 (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
225, 21eqeltrd 2828 1 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387  ⟨“cs3 14808  Catccat 17625   Func cfunc 17816  func ccofu 17818   FuncCat cfuc 17907   ×c cxpc 18129   1stF c1stf 18130   2ndF c2ndf 18131   ⟨,⟩F cprf 18132   evalF cevlf 18170   uncurryF cuncf 18172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-nat 17908  df-fuc 17909  df-xpc 18133  df-1stf 18134  df-2ndf 18135  df-prf 18136  df-evlf 18174  df-uncf 18176
This theorem is referenced by:  curfuncf  18199  uncfcurf  18200
  Copyright terms: Public domain W3C validator