MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcl Structured version   Visualization version   GIF version

Theorem uncfcl 18281
Description: The uncurry operation takes a functor 𝐹:𝐶⟶(𝐷𝐸) to a functor uncurryF (𝐹):𝐶 × 𝐷𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
uncfcl (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))

Proof of Theorem uncfcl
StepHypRef Expression
1 uncfval.g . . 3 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . 3 (𝜑𝐷 ∈ Cat)
3 uncfval.d . . 3 (𝜑𝐸 ∈ Cat)
4 uncfval.f . . 3 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
51, 2, 3, 4uncfval 18280 . 2 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
6 eqid 2736 . . . 4 ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))
7 eqid 2736 . . . 4 ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷)
8 eqid 2736 . . . . . 6 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
9 funcrcl 17909 . . . . . . . 8 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
104, 9syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
1110simpld 494 . . . . . 6 (𝜑𝐶 ∈ Cat)
12 eqid 2736 . . . . . 6 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
138, 11, 2, 121stfcl 18243 . . . . 5 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
1413, 4cofucl 17934 . . . 4 (𝜑 → (𝐺func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸)))
15 eqid 2736 . . . . 5 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
168, 11, 2, 152ndfcl 18244 . . . 4 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
176, 7, 14, 16prfcl 18249 . . 3 (𝜑 → ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷)))
18 eqid 2736 . . . 4 (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸)
19 eqid 2736 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
2018, 19, 2, 3evlfcl 18268 . . 3 (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸))
2117, 20cofucl 17934 . 2 (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
225, 21eqeltrd 2840 1 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  (class class class)co 7432  ⟨“cs3 14882  Catccat 17708   Func cfunc 17900  func ccofu 17902   FuncCat cfuc 17991   ×c cxpc 18214   1stF c1stf 18215   2ndF c2ndf 18216   ⟨,⟩F cprf 18217   evalF cevlf 18255   uncurryF cuncf 18257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-s2 14888  df-s3 14889  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-hom 17322  df-cco 17323  df-cat 17712  df-cid 17713  df-func 17904  df-cofu 17906  df-nat 17992  df-fuc 17993  df-xpc 18218  df-1stf 18219  df-2ndf 18220  df-prf 18221  df-evlf 18259  df-uncf 18261
This theorem is referenced by:  curfuncf  18284  uncfcurf  18285
  Copyright terms: Public domain W3C validator