![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uncfcl | Structured version Visualization version GIF version |
Description: The uncurry operation takes a functor 𝐹:𝐶⟶(𝐷⟶𝐸) to a functor uncurryF (𝐹):𝐶 × 𝐷⟶𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.) |
Ref | Expression |
---|---|
uncfval.g | ⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) |
uncfval.c | ⊢ (𝜑 → 𝐷 ∈ Cat) |
uncfval.d | ⊢ (𝜑 → 𝐸 ∈ Cat) |
uncfval.f | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
Ref | Expression |
---|---|
uncfcl | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncfval.g | . . 3 ⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) | |
2 | uncfval.c | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
3 | uncfval.d | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
4 | uncfval.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) | |
5 | 1, 2, 3, 4 | uncfval 17188 | . 2 ⊢ (𝜑 → 𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)))) |
6 | eqid 2800 | . . . 4 ⊢ ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) = ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) | |
7 | eqid 2800 | . . . 4 ⊢ ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷) | |
8 | eqid 2800 | . . . . . 6 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
9 | funcrcl 16836 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) | |
10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) |
11 | 10 | simpld 489 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
12 | eqid 2800 | . . . . . 6 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
13 | 8, 11, 2, 12 | 1stfcl 17151 | . . . . 5 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
14 | 13, 4 | cofucl 16861 | . . . 4 ⊢ (𝜑 → (𝐺 ∘func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸))) |
15 | eqid 2800 | . . . . 5 ⊢ (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷) | |
16 | 8, 11, 2, 15 | 2ndfcl 17152 | . . . 4 ⊢ (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷)) |
17 | 6, 7, 14, 16 | prfcl 17157 | . . 3 ⊢ (𝜑 → ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷))) |
18 | eqid 2800 | . . . 4 ⊢ (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸) | |
19 | eqid 2800 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
20 | 18, 19, 2, 3 | evlfcl 17176 | . . 3 ⊢ (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸)) |
21 | 17, 20 | cofucl 16861 | . 2 ⊢ (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷))) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
22 | 5, 21 | eqeltrd 2879 | 1 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 (class class class)co 6879 〈“cs3 13926 Catccat 16638 Func cfunc 16827 ∘func ccofu 16829 FuncCat cfuc 16915 ×c cxpc 17122 1stF c1stf 17123 2ndF c2ndf 17124 〈,〉F cprf 17125 evalF cevlf 17163 uncurryF cuncf 17165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-map 8098 df-ixp 8150 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-fz 12580 df-fzo 12720 df-hash 13370 df-word 13534 df-concat 13590 df-s1 13615 df-s2 13932 df-s3 13933 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-hom 16290 df-cco 16291 df-cat 16642 df-cid 16643 df-func 16831 df-cofu 16833 df-nat 16916 df-fuc 16917 df-xpc 17126 df-1stf 17127 df-2ndf 17128 df-prf 17129 df-evlf 17167 df-uncf 17169 |
This theorem is referenced by: curfuncf 17192 uncfcurf 17193 |
Copyright terms: Public domain | W3C validator |