Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uncfcl | Structured version Visualization version GIF version |
Description: The uncurry operation takes a functor 𝐹:𝐶⟶(𝐷⟶𝐸) to a functor uncurryF (𝐹):𝐶 × 𝐷⟶𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.) |
Ref | Expression |
---|---|
uncfval.g | ⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) |
uncfval.c | ⊢ (𝜑 → 𝐷 ∈ Cat) |
uncfval.d | ⊢ (𝜑 → 𝐸 ∈ Cat) |
uncfval.f | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
Ref | Expression |
---|---|
uncfcl | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncfval.g | . . 3 ⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) | |
2 | uncfval.c | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
3 | uncfval.d | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
4 | uncfval.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) | |
5 | 1, 2, 3, 4 | uncfval 17868 | . 2 ⊢ (𝜑 → 𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)))) |
6 | eqid 2738 | . . . 4 ⊢ ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) = ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) | |
7 | eqid 2738 | . . . 4 ⊢ ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷) | |
8 | eqid 2738 | . . . . . 6 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
9 | funcrcl 17494 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) | |
10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) |
11 | 10 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
12 | eqid 2738 | . . . . . 6 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
13 | 8, 11, 2, 12 | 1stfcl 17830 | . . . . 5 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
14 | 13, 4 | cofucl 17519 | . . . 4 ⊢ (𝜑 → (𝐺 ∘func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸))) |
15 | eqid 2738 | . . . . 5 ⊢ (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷) | |
16 | 8, 11, 2, 15 | 2ndfcl 17831 | . . . 4 ⊢ (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷)) |
17 | 6, 7, 14, 16 | prfcl 17836 | . . 3 ⊢ (𝜑 → ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷))) |
18 | eqid 2738 | . . . 4 ⊢ (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸) | |
19 | eqid 2738 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
20 | 18, 19, 2, 3 | evlfcl 17856 | . . 3 ⊢ (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸)) |
21 | 17, 20 | cofucl 17519 | . 2 ⊢ (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷))) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
22 | 5, 21 | eqeltrd 2839 | 1 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 〈“cs3 14483 Catccat 17290 Func cfunc 17485 ∘func ccofu 17487 FuncCat cfuc 17574 ×c cxpc 17801 1stF c1stf 17802 2ndF c2ndf 17803 〈,〉F cprf 17804 evalF cevlf 17843 uncurryF cuncf 17845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-cat 17294 df-cid 17295 df-func 17489 df-cofu 17491 df-nat 17575 df-fuc 17576 df-xpc 17805 df-1stf 17806 df-2ndf 17807 df-prf 17808 df-evlf 17847 df-uncf 17849 |
This theorem is referenced by: curfuncf 17872 uncfcurf 17873 |
Copyright terms: Public domain | W3C validator |