| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uncfcl | Structured version Visualization version GIF version | ||
| Description: The uncurry operation takes a functor 𝐹:𝐶⟶(𝐷⟶𝐸) to a functor uncurryF (𝐹):𝐶 × 𝐷⟶𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| Ref | Expression |
|---|---|
| uncfval.g | ⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) |
| uncfval.c | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| uncfval.d | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| uncfval.f | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
| Ref | Expression |
|---|---|
| uncfcl | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfval.g | . . 3 ⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF 𝐺) | |
| 2 | uncfval.c | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 3 | uncfval.d | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) | |
| 4 | uncfval.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) | |
| 5 | 1, 2, 3, 4 | uncfval 18142 | . 2 ⊢ (𝜑 → 𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)))) |
| 6 | eqid 2733 | . . . 4 ⊢ ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) = ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) | |
| 7 | eqid 2733 | . . . 4 ⊢ ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷) | |
| 8 | eqid 2733 | . . . . . 6 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 9 | funcrcl 17772 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) | |
| 10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) |
| 11 | 10 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 12 | eqid 2733 | . . . . . 6 ⊢ (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷) | |
| 13 | 8, 11, 2, 12 | 1stfcl 18105 | . . . . 5 ⊢ (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶)) |
| 14 | 13, 4 | cofucl 17797 | . . . 4 ⊢ (𝜑 → (𝐺 ∘func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸))) |
| 15 | eqid 2733 | . . . . 5 ⊢ (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷) | |
| 16 | 8, 11, 2, 15 | 2ndfcl 18106 | . . . 4 ⊢ (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷)) |
| 17 | 6, 7, 14, 16 | prfcl 18111 | . . 3 ⊢ (𝜑 → ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷))) |
| 18 | eqid 2733 | . . . 4 ⊢ (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸) | |
| 19 | eqid 2733 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 20 | 18, 19, 2, 3 | evlfcl 18130 | . . 3 ⊢ (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸)) |
| 21 | 17, 20 | cofucl 17797 | . 2 ⊢ (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺 ∘func (𝐶 1stF 𝐷)) 〈,〉F (𝐶 2ndF 𝐷))) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| 22 | 5, 21 | eqeltrd 2833 | 1 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 〈“cs3 14751 Catccat 17572 Func cfunc 17763 ∘func ccofu 17765 FuncCat cfuc 17854 ×c cxpc 18076 1stF c1stf 18077 2ndF c2ndf 18078 〈,〉F cprf 18079 evalF cevlf 18117 uncurryF cuncf 18119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-cat 17576 df-cid 17577 df-func 17767 df-cofu 17769 df-nat 17855 df-fuc 17856 df-xpc 18080 df-1stf 18081 df-2ndf 18082 df-prf 18083 df-evlf 18121 df-uncf 18123 |
| This theorem is referenced by: curfuncf 18146 uncfcurf 18147 |
| Copyright terms: Public domain | W3C validator |