MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcl Structured version   Visualization version   GIF version

Theorem uncfcl 18292
Description: The uncurry operation takes a functor 𝐹:𝐶⟶(𝐷𝐸) to a functor uncurryF (𝐹):𝐶 × 𝐷𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
uncfcl (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))

Proof of Theorem uncfcl
StepHypRef Expression
1 uncfval.g . . 3 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . 3 (𝜑𝐷 ∈ Cat)
3 uncfval.d . . 3 (𝜑𝐸 ∈ Cat)
4 uncfval.f . . 3 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
51, 2, 3, 4uncfval 18291 . 2 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
6 eqid 2735 . . . 4 ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))
7 eqid 2735 . . . 4 ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷)
8 eqid 2735 . . . . . 6 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
9 funcrcl 17914 . . . . . . . 8 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
104, 9syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
1110simpld 494 . . . . . 6 (𝜑𝐶 ∈ Cat)
12 eqid 2735 . . . . . 6 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
138, 11, 2, 121stfcl 18253 . . . . 5 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
1413, 4cofucl 17939 . . . 4 (𝜑 → (𝐺func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸)))
15 eqid 2735 . . . . 5 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
168, 11, 2, 152ndfcl 18254 . . . 4 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
176, 7, 14, 16prfcl 18259 . . 3 (𝜑 → ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷)))
18 eqid 2735 . . . 4 (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸)
19 eqid 2735 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
2018, 19, 2, 3evlfcl 18279 . . 3 (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸))
2117, 20cofucl 17939 . 2 (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
225, 21eqeltrd 2839 1 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  (class class class)co 7431  ⟨“cs3 14878  Catccat 17709   Func cfunc 17905  func ccofu 17907   FuncCat cfuc 17997   ×c cxpc 18224   1stF c1stf 18225   2ndF c2ndf 18226   ⟨,⟩F cprf 18227   evalF cevlf 18266   uncurryF cuncf 18268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-hom 17322  df-cco 17323  df-cat 17713  df-cid 17714  df-func 17909  df-cofu 17911  df-nat 17998  df-fuc 17999  df-xpc 18228  df-1stf 18229  df-2ndf 18230  df-prf 18231  df-evlf 18270  df-uncf 18272
This theorem is referenced by:  curfuncf  18295  uncfcurf  18296
  Copyright terms: Public domain W3C validator