| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0srpr | Structured version Visualization version GIF version | ||
| Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gt0srpr | ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsrpr 11098 | . 2 ⊢ ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)) | |
| 2 | df-0r 11081 | . . 3 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 3 | 2 | breq1i 5130 | . 2 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ [〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ) |
| 4 | 1pr 11036 | . . 3 ⊢ 1P ∈ P | |
| 5 | ltapr 11066 | . . 3 ⊢ (1P ∈ P → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)) |
| 7 | 1, 3, 6 | 3bitr4i 303 | 1 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 〈cop 4612 class class class wbr 5123 (class class class)co 7412 [cec 8724 Pcnp 10880 1Pc1p 10881 +P cpp 10882 <P cltp 10884 ~R cer 10885 0Rc0r 10887 <R cltr 10892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-omul 8492 df-er 8726 df-ec 8728 df-qs 8732 df-ni 10893 df-pli 10894 df-mi 10895 df-lti 10896 df-plpq 10929 df-mpq 10930 df-ltpq 10931 df-enq 10932 df-nq 10933 df-erq 10934 df-plq 10935 df-mq 10936 df-1nq 10937 df-rq 10938 df-ltnq 10939 df-np 11002 df-1p 11003 df-plp 11004 df-ltp 11006 df-enr 11076 df-nr 11077 df-ltr 11080 df-0r 11081 |
| This theorem is referenced by: recexsrlem 11124 mulgt0sr 11126 |
| Copyright terms: Public domain | W3C validator |