![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gt0srpr | Structured version Visualization version GIF version |
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gt0srpr | ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsrpr 10934 | . 2 ⊢ ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)) | |
2 | df-0r 10917 | . . 3 ⊢ 0R = [〈1P, 1P〉] ~R | |
3 | 2 | breq1i 5099 | . 2 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ [〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ) |
4 | 1pr 10872 | . . 3 ⊢ 1P ∈ P | |
5 | ltapr 10902 | . . 3 ⊢ (1P ∈ P → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)) |
7 | 1, 3, 6 | 3bitr4i 302 | 1 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 〈cop 4579 class class class wbr 5092 (class class class)co 7337 [cec 8567 Pcnp 10716 1Pc1p 10717 +P cpp 10718 <P cltp 10720 ~R cer 10721 0Rc0r 10723 <R cltr 10728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-omul 8372 df-er 8569 df-ec 8571 df-qs 8575 df-ni 10729 df-pli 10730 df-mi 10731 df-lti 10732 df-plpq 10765 df-mpq 10766 df-ltpq 10767 df-enq 10768 df-nq 10769 df-erq 10770 df-plq 10771 df-mq 10772 df-1nq 10773 df-rq 10774 df-ltnq 10775 df-np 10838 df-1p 10839 df-plp 10840 df-ltp 10842 df-enr 10912 df-nr 10913 df-ltr 10916 df-0r 10917 |
This theorem is referenced by: recexsrlem 10960 mulgt0sr 10962 |
Copyright terms: Public domain | W3C validator |