![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gt0srpr | Structured version Visualization version GIF version |
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gt0srpr | ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsrpr 11121 | . 2 ⊢ ([〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ↔ (1P +P 𝐵)<P (1P +P 𝐴)) | |
2 | df-0r 11104 | . . 3 ⊢ 0R = [〈1P, 1P〉] ~R | |
3 | 2 | breq1i 5156 | . 2 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ [〈1P, 1P〉] ~R <R [〈𝐴, 𝐵〉] ~R ) |
4 | 1pr 11059 | . . 3 ⊢ 1P ∈ P | |
5 | ltapr 11089 | . . 3 ⊢ (1P ∈ P → (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝐵<P 𝐴 ↔ (1P +P 𝐵)<P (1P +P 𝐴)) |
7 | 1, 3, 6 | 3bitr4i 303 | 1 ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2107 〈cop 4638 class class class wbr 5149 (class class class)co 7435 [cec 8748 Pcnp 10903 1Pc1p 10904 +P cpp 10905 <P cltp 10907 ~R cer 10908 0Rc0r 10910 <R cltr 10915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-oadd 8515 df-omul 8516 df-er 8750 df-ec 8752 df-qs 8756 df-ni 10916 df-pli 10917 df-mi 10918 df-lti 10919 df-plpq 10952 df-mpq 10953 df-ltpq 10954 df-enq 10955 df-nq 10956 df-erq 10957 df-plq 10958 df-mq 10959 df-1nq 10960 df-rq 10961 df-ltnq 10962 df-np 11025 df-1p 11026 df-plp 11027 df-ltp 11029 df-enr 11099 df-nr 11100 df-ltr 11103 df-0r 11104 |
This theorem is referenced by: recexsrlem 11147 mulgt0sr 11149 |
Copyright terms: Public domain | W3C validator |