| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmexlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for hsmex 10392. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| hsmexlem4.x | ⊢ 𝑋 ∈ V |
| hsmexlem4.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
| hsmexlem4.u | ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) |
| hsmexlem4.s | ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} |
| hsmexlem4.o | ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) |
| Ref | Expression |
|---|---|
| hsmexlem6 | ⊢ 𝑆 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6874 | . 2 ⊢ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ∈ V | |
| 2 | hsmexlem4.x | . . . . 5 ⊢ 𝑋 ∈ V | |
| 3 | hsmexlem4.h | . . . . 5 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
| 4 | hsmexlem4.u | . . . . 5 ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) | |
| 5 | hsmexlem4.s | . . . . 5 ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} | |
| 6 | hsmexlem4.o | . . . . 5 ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) | |
| 7 | 2, 3, 4, 5, 6 | hsmexlem5 10390 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻))) |
| 8 | 5 | ssrab3 4048 | . . . . . 6 ⊢ 𝑆 ⊆ ∪ (𝑅1 “ On) |
| 9 | 8 | sseli 3945 | . . . . 5 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ ∪ (𝑅1 “ On)) |
| 10 | harcl 9519 | . . . . . 6 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ On | |
| 11 | r1fnon 9727 | . . . . . . 7 ⊢ 𝑅1 Fn On | |
| 12 | 11 | fndmi 6625 | . . . . . 6 ⊢ dom 𝑅1 = On |
| 13 | 10, 12 | eleqtrri 2828 | . . . . 5 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1 |
| 14 | rankr1ag 9762 | . . . . 5 ⊢ ((𝑑 ∈ ∪ (𝑅1 “ On) ∧ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1) → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) | |
| 15 | 9, 13, 14 | sylancl 586 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) |
| 16 | 7, 15 | mpbird 257 | . . 3 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻)))) |
| 17 | 16 | ssriv 3953 | . 2 ⊢ 𝑆 ⊆ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) |
| 18 | 1, 17 | ssexi 5280 | 1 ⊢ 𝑆 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 E cep 5540 × cxp 5639 dom cdm 5641 ran crn 5642 ↾ cres 5643 “ cima 5644 Oncon0 6335 ‘cfv 6514 ωcom 7845 reccrdg 8380 ≼ cdom 8919 OrdIsocoi 9469 harchar 9516 TCctc 9696 𝑅1cr1 9722 rankcrnk 9723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-smo 8318 df-recs 8343 df-rdg 8381 df-en 8922 df-dom 8923 df-sdom 8924 df-oi 9470 df-har 9517 df-wdom 9525 df-tc 9697 df-r1 9724 df-rank 9725 |
| This theorem is referenced by: hsmex 10392 |
| Copyright terms: Public domain | W3C validator |