| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmexlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for hsmex 10385. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| hsmexlem4.x | ⊢ 𝑋 ∈ V |
| hsmexlem4.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
| hsmexlem4.u | ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) |
| hsmexlem4.s | ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} |
| hsmexlem4.o | ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) |
| Ref | Expression |
|---|---|
| hsmexlem6 | ⊢ 𝑆 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . 2 ⊢ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ∈ V | |
| 2 | hsmexlem4.x | . . . . 5 ⊢ 𝑋 ∈ V | |
| 3 | hsmexlem4.h | . . . . 5 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
| 4 | hsmexlem4.u | . . . . 5 ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) | |
| 5 | hsmexlem4.s | . . . . 5 ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} | |
| 6 | hsmexlem4.o | . . . . 5 ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) | |
| 7 | 2, 3, 4, 5, 6 | hsmexlem5 10383 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻))) |
| 8 | 5 | ssrab3 4045 | . . . . . 6 ⊢ 𝑆 ⊆ ∪ (𝑅1 “ On) |
| 9 | 8 | sseli 3942 | . . . . 5 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ ∪ (𝑅1 “ On)) |
| 10 | harcl 9512 | . . . . . 6 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ On | |
| 11 | r1fnon 9720 | . . . . . . 7 ⊢ 𝑅1 Fn On | |
| 12 | 11 | fndmi 6622 | . . . . . 6 ⊢ dom 𝑅1 = On |
| 13 | 10, 12 | eleqtrri 2827 | . . . . 5 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1 |
| 14 | rankr1ag 9755 | . . . . 5 ⊢ ((𝑑 ∈ ∪ (𝑅1 “ On) ∧ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1) → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) | |
| 15 | 9, 13, 14 | sylancl 586 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) |
| 16 | 7, 15 | mpbird 257 | . . 3 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻)))) |
| 17 | 16 | ssriv 3950 | . 2 ⊢ 𝑆 ⊆ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) |
| 18 | 1, 17 | ssexi 5277 | 1 ⊢ 𝑆 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 E cep 5537 × cxp 5636 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Oncon0 6332 ‘cfv 6511 ωcom 7842 reccrdg 8377 ≼ cdom 8916 OrdIsocoi 9462 harchar 9509 TCctc 9689 𝑅1cr1 9715 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-smo 8315 df-recs 8340 df-rdg 8378 df-en 8919 df-dom 8920 df-sdom 8921 df-oi 9463 df-har 9510 df-wdom 9518 df-tc 9690 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: hsmex 10385 |
| Copyright terms: Public domain | W3C validator |