MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem6 Structured version   Visualization version   GIF version

Theorem hsmexlem6 10384
Description: Lemma for hsmex 10385. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem6 𝑆 ∈ V
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem6
StepHypRef Expression
1 fvex 6871 . 2 (𝑅1‘(har‘𝒫 (ω × ran 𝐻))) ∈ V
2 hsmexlem4.x . . . . 5 𝑋 ∈ V
3 hsmexlem4.h . . . . 5 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
4 hsmexlem4.u . . . . 5 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
5 hsmexlem4.s . . . . 5 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
6 hsmexlem4.o . . . . 5 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
72, 3, 4, 5, 6hsmexlem5 10383 . . . 4 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
85ssrab3 4045 . . . . . 6 𝑆 (𝑅1 “ On)
98sseli 3942 . . . . 5 (𝑑𝑆𝑑 (𝑅1 “ On))
10 harcl 9512 . . . . . 6 (har‘𝒫 (ω × ran 𝐻)) ∈ On
11 r1fnon 9720 . . . . . . 7 𝑅1 Fn On
1211fndmi 6622 . . . . . 6 dom 𝑅1 = On
1310, 12eleqtrri 2827 . . . . 5 (har‘𝒫 (ω × ran 𝐻)) ∈ dom 𝑅1
14 rankr1ag 9755 . . . . 5 ((𝑑 (𝑅1 “ On) ∧ (har‘𝒫 (ω × ran 𝐻)) ∈ dom 𝑅1) → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻))))
159, 13, 14sylancl 586 . . . 4 (𝑑𝑆 → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻))))
167, 15mpbird 257 . . 3 (𝑑𝑆𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ran 𝐻))))
1716ssriv 3950 . 2 𝑆 ⊆ (𝑅1‘(har‘𝒫 (ω × ran 𝐻)))
181, 17ssexi 5277 1 𝑆 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  𝒫 cpw 4563  {csn 4589   cuni 4871   class class class wbr 5107  cmpt 5188   E cep 5537   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Oncon0 6332  cfv 6511  ωcom 7842  reccrdg 8377  cdom 8916  OrdIsocoi 9462  harchar 9509  TCctc 9689  𝑅1cr1 9715  rankcrnk 9716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-smo 8315  df-recs 8340  df-rdg 8378  df-en 8919  df-dom 8920  df-sdom 8921  df-oi 9463  df-har 9510  df-wdom 9518  df-tc 9690  df-r1 9717  df-rank 9718
This theorem is referenced by:  hsmex  10385
  Copyright terms: Public domain W3C validator