Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hsmexlem6 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 10188. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem4.x | ⊢ 𝑋 ∈ V |
hsmexlem4.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
hsmexlem4.u | ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) |
hsmexlem4.s | ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} |
hsmexlem4.o | ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) |
Ref | Expression |
---|---|
hsmexlem6 | ⊢ 𝑆 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6787 | . 2 ⊢ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ∈ V | |
2 | hsmexlem4.x | . . . . 5 ⊢ 𝑋 ∈ V | |
3 | hsmexlem4.h | . . . . 5 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
4 | hsmexlem4.u | . . . . 5 ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) | |
5 | hsmexlem4.s | . . . . 5 ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} | |
6 | hsmexlem4.o | . . . . 5 ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) | |
7 | 2, 3, 4, 5, 6 | hsmexlem5 10186 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻))) |
8 | 5 | ssrab3 4015 | . . . . . 6 ⊢ 𝑆 ⊆ ∪ (𝑅1 “ On) |
9 | 8 | sseli 3917 | . . . . 5 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ ∪ (𝑅1 “ On)) |
10 | harcl 9318 | . . . . . 6 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ On | |
11 | r1fnon 9525 | . . . . . . 7 ⊢ 𝑅1 Fn On | |
12 | 11 | fndmi 6537 | . . . . . 6 ⊢ dom 𝑅1 = On |
13 | 10, 12 | eleqtrri 2838 | . . . . 5 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1 |
14 | rankr1ag 9560 | . . . . 5 ⊢ ((𝑑 ∈ ∪ (𝑅1 “ On) ∧ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1) → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) | |
15 | 9, 13, 14 | sylancl 586 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) |
16 | 7, 15 | mpbird 256 | . . 3 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻)))) |
17 | 16 | ssriv 3925 | . 2 ⊢ 𝑆 ⊆ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) |
18 | 1, 17 | ssexi 5246 | 1 ⊢ 𝑆 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 class class class wbr 5074 ↦ cmpt 5157 E cep 5494 × cxp 5587 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 Oncon0 6266 ‘cfv 6433 ωcom 7712 reccrdg 8240 ≼ cdom 8731 OrdIsocoi 9268 harchar 9315 TCctc 9494 𝑅1cr1 9520 rankcrnk 9521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-smo 8177 df-recs 8202 df-rdg 8241 df-en 8734 df-dom 8735 df-sdom 8736 df-oi 9269 df-har 9316 df-wdom 9324 df-tc 9495 df-r1 9522 df-rank 9523 |
This theorem is referenced by: hsmex 10188 |
Copyright terms: Public domain | W3C validator |