Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hsmexlem6 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 10046. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem4.x | ⊢ 𝑋 ∈ V |
hsmexlem4.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
hsmexlem4.u | ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) |
hsmexlem4.s | ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} |
hsmexlem4.o | ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) |
Ref | Expression |
---|---|
hsmexlem6 | ⊢ 𝑆 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6730 | . 2 ⊢ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ∈ V | |
2 | hsmexlem4.x | . . . . 5 ⊢ 𝑋 ∈ V | |
3 | hsmexlem4.h | . . . . 5 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
4 | hsmexlem4.u | . . . . 5 ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) | |
5 | hsmexlem4.s | . . . . 5 ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} | |
6 | hsmexlem4.o | . . . . 5 ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) | |
7 | 2, 3, 4, 5, 6 | hsmexlem5 10044 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻))) |
8 | 5 | ssrab3 3995 | . . . . . 6 ⊢ 𝑆 ⊆ ∪ (𝑅1 “ On) |
9 | 8 | sseli 3896 | . . . . 5 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ ∪ (𝑅1 “ On)) |
10 | harcl 9175 | . . . . . 6 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ On | |
11 | r1fnon 9383 | . . . . . . 7 ⊢ 𝑅1 Fn On | |
12 | 11 | fndmi 6482 | . . . . . 6 ⊢ dom 𝑅1 = On |
13 | 10, 12 | eleqtrri 2837 | . . . . 5 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1 |
14 | rankr1ag 9418 | . . . . 5 ⊢ ((𝑑 ∈ ∪ (𝑅1 “ On) ∧ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1) → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) | |
15 | 9, 13, 14 | sylancl 589 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) |
16 | 7, 15 | mpbird 260 | . . 3 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻)))) |
17 | 16 | ssriv 3905 | . 2 ⊢ 𝑆 ⊆ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) |
18 | 1, 17 | ssexi 5215 | 1 ⊢ 𝑆 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 Vcvv 3408 𝒫 cpw 4513 {csn 4541 ∪ cuni 4819 class class class wbr 5053 ↦ cmpt 5135 E cep 5459 × cxp 5549 dom cdm 5551 ran crn 5552 ↾ cres 5553 “ cima 5554 Oncon0 6213 ‘cfv 6380 ωcom 7644 reccrdg 8145 ≼ cdom 8624 OrdIsocoi 9125 harchar 9172 TCctc 9352 𝑅1cr1 9378 rankcrnk 9379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-smo 8083 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-oi 9126 df-har 9173 df-wdom 9181 df-tc 9353 df-r1 9380 df-rank 9381 |
This theorem is referenced by: hsmex 10046 |
Copyright terms: Public domain | W3C validator |