![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmexlem6 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 10426. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem4.x | β’ π β V |
hsmexlem4.h | β’ π» = (rec((π§ β V β¦ (harβπ« (π Γ π§))), (harβπ« π)) βΎ Ο) |
hsmexlem4.u | β’ π = (π₯ β V β¦ (rec((π¦ β V β¦ βͺ π¦), π₯) βΎ Ο)) |
hsmexlem4.s | β’ π = {π β βͺ (π 1 β On) β£ βπ β (TCβ{π})π βΌ π} |
hsmexlem4.o | β’ π = OrdIso( E , (rank β ((πβπ)βπ))) |
Ref | Expression |
---|---|
hsmexlem6 | β’ π β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . 2 β’ (π 1β(harβπ« (Ο Γ βͺ ran π»))) β V | |
2 | hsmexlem4.x | . . . . 5 β’ π β V | |
3 | hsmexlem4.h | . . . . 5 β’ π» = (rec((π§ β V β¦ (harβπ« (π Γ π§))), (harβπ« π)) βΎ Ο) | |
4 | hsmexlem4.u | . . . . 5 β’ π = (π₯ β V β¦ (rec((π¦ β V β¦ βͺ π¦), π₯) βΎ Ο)) | |
5 | hsmexlem4.s | . . . . 5 β’ π = {π β βͺ (π 1 β On) β£ βπ β (TCβ{π})π βΌ π} | |
6 | hsmexlem4.o | . . . . 5 β’ π = OrdIso( E , (rank β ((πβπ)βπ))) | |
7 | 2, 3, 4, 5, 6 | hsmexlem5 10424 | . . . 4 β’ (π β π β (rankβπ) β (harβπ« (Ο Γ βͺ ran π»))) |
8 | 5 | ssrab3 4080 | . . . . . 6 β’ π β βͺ (π 1 β On) |
9 | 8 | sseli 3978 | . . . . 5 β’ (π β π β π β βͺ (π 1 β On)) |
10 | harcl 9553 | . . . . . 6 β’ (harβπ« (Ο Γ βͺ ran π»)) β On | |
11 | r1fnon 9761 | . . . . . . 7 β’ π 1 Fn On | |
12 | 11 | fndmi 6653 | . . . . . 6 β’ dom π 1 = On |
13 | 10, 12 | eleqtrri 2832 | . . . . 5 β’ (harβπ« (Ο Γ βͺ ran π»)) β dom π 1 |
14 | rankr1ag 9796 | . . . . 5 β’ ((π β βͺ (π 1 β On) β§ (harβπ« (Ο Γ βͺ ran π»)) β dom π 1) β (π β (π 1β(harβπ« (Ο Γ βͺ ran π»))) β (rankβπ) β (harβπ« (Ο Γ βͺ ran π»)))) | |
15 | 9, 13, 14 | sylancl 586 | . . . 4 β’ (π β π β (π β (π 1β(harβπ« (Ο Γ βͺ ran π»))) β (rankβπ) β (harβπ« (Ο Γ βͺ ran π»)))) |
16 | 7, 15 | mpbird 256 | . . 3 β’ (π β π β π β (π 1β(harβπ« (Ο Γ βͺ ran π»)))) |
17 | 16 | ssriv 3986 | . 2 β’ π β (π 1β(harβπ« (Ο Γ βͺ ran π»))) |
18 | 1, 17 | ssexi 5322 | 1 β’ π β V |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 Vcvv 3474 π« cpw 4602 {csn 4628 βͺ cuni 4908 class class class wbr 5148 β¦ cmpt 5231 E cep 5579 Γ cxp 5674 dom cdm 5676 ran crn 5677 βΎ cres 5678 β cima 5679 Oncon0 6364 βcfv 6543 Οcom 7854 reccrdg 8408 βΌ cdom 8936 OrdIsocoi 9503 harchar 9550 TCctc 9730 π 1cr1 9756 rankcrnk 9757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-smo 8345 df-recs 8370 df-rdg 8409 df-en 8939 df-dom 8940 df-sdom 8941 df-oi 9504 df-har 9551 df-wdom 9559 df-tc 9731 df-r1 9758 df-rank 9759 |
This theorem is referenced by: hsmex 10426 |
Copyright terms: Public domain | W3C validator |