MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap Structured version   Visualization version   GIF version

Theorem infmap 10536
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. (Contributed by NM, 1-Oct-2004.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap ((ω ≼ 𝐴𝐵𝐴) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infmap
StepHypRef Expression
1 ovex 7423 . . 3 (𝐴m 𝐵) ∈ V
2 numth3 10430 . . 3 ((𝐴m 𝐵) ∈ V → (𝐴m 𝐵) ∈ dom card)
31, 2ax-mp 5 . 2 (𝐴m 𝐵) ∈ dom card
4 infmap2 10177 . 2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
53, 4mp3an3 1452 1 ((ω ≼ 𝐴𝐵𝐴) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2708  Vcvv 3450  wss 3917   class class class wbr 5110  dom cdm 5641  (class class class)co 7390  ωcom 7845  m cmap 8802  cen 8918  cdom 8919  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076
This theorem is referenced by:  alephexp2  10541
  Copyright terms: Public domain W3C validator