![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxpidm | Structured version Visualization version GIF version |
Description: Every infinite class is equinumerous to its Cartesian square. This theorem, which is equivalent to the axiom of choice over ZF, provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This is a corollary of infxpen 10011 (used via infxpidm2 10014). (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
infxpidm | ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8947 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5726 | . . 3 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
3 | numth3 10467 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ dom card) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ dom card) |
5 | infxpidm2 10014 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
6 | 4, 5 | mpancom 685 | 1 ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3468 class class class wbr 5141 × cxp 5667 dom cdm 5669 ωcom 7852 ≈ cen 8938 ≼ cdom 8939 cardccrd 9932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-ac2 10460 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-card 9936 df-ac 10113 |
This theorem is referenced by: unirnfdomd 10564 inar1 10772 |
Copyright terms: Public domain | W3C validator |