| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infxpidm | Structured version Visualization version GIF version | ||
| Description: Every infinite class is equinumerous to its Cartesian square. This theorem, which is equivalent to the axiom of choice over ZF, provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This is a corollary of infxpen 9914 (used via infxpidm2 9917). (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| Ref | Expression |
|---|---|
| infxpidm | ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8883 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex2i 5678 | . . 3 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
| 3 | numth3 10370 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ dom card) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ dom card) |
| 5 | infxpidm2 9917 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
| 6 | 4, 5 | mpancom 688 | 1 ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 class class class wbr 5095 × cxp 5619 dom cdm 5621 ωcom 7804 ≈ cen 8874 ≼ cdom 8875 cardccrd 9837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-ac2 10363 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-oi 9405 df-card 9841 df-ac 10016 |
| This theorem is referenced by: unirnfdomd 10467 inar1 10675 |
| Copyright terms: Public domain | W3C validator |