Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem10 Structured version   Visualization version   GIF version

Theorem dnibndlem10 33826
Description: Lemma for dnibnd 33830. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem10.1 (𝜑𝐴 ∈ ℝ)
dnibndlem10.2 (𝜑𝐵 ∈ ℝ)
dnibndlem10.3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem10 (𝜑 → 1 ≤ (𝐵𝐴))

Proof of Theorem dnibndlem10
StepHypRef Expression
1 1red 10642 . 2 (𝜑 → 1 ∈ ℝ)
2 dnibndlem10.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
3 halfre 11852 . . . . . . . . 9 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
52, 4readdcld 10670 . . . . . . 7 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
6 reflcl 13167 . . . . . . 7 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
75, 6syl 17 . . . . . 6 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
87, 4jca 514 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
9 resubcl 10950 . . . . 5 (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
108, 9syl 17 . . . 4 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
11 dnibndlem10.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1211, 4readdcld 10670 . . . . . 6 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
13 reflcl 13167 . . . . . 6 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1514, 4readdcld 10670 . . . 4 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
1610, 15jca 514 . . 3 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ))
17 resubcl 10950 . . 3 ((((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ∈ ℝ)
1816, 17syl 17 . 2 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ∈ ℝ)
192, 11resubcld 11068 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
2014recnd 10669 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
21 2cnd 11716 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
224recnd 10669 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
2320, 21, 22addsubassd 11017 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))))
2423oveq1d 7171 . . . . 5 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
2521, 22subcld 10997 . . . . . 6 (𝜑 → (2 − (1 / 2)) ∈ ℂ)
2620, 25, 22pnpcand 11034 . . . . 5 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = ((2 − (1 / 2)) − (1 / 2)))
2721, 22, 22subsub4d 11028 . . . . . 6 (𝜑 → ((2 − (1 / 2)) − (1 / 2)) = (2 − ((1 / 2) + (1 / 2))))
28 ax-1cn 10595 . . . . . . . . 9 1 ∈ ℂ
29 2halves 11866 . . . . . . . . 9 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
3028, 29ax-mp 5 . . . . . . . 8 ((1 / 2) + (1 / 2)) = 1
3130a1i 11 . . . . . . 7 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
3231oveq2d 7172 . . . . . 6 (𝜑 → (2 − ((1 / 2) + (1 / 2))) = (2 − 1))
33 2m1e1 11764 . . . . . . 7 (2 − 1) = 1
3433a1i 11 . . . . . 6 (𝜑 → (2 − 1) = 1)
3527, 32, 343eqtrd 2860 . . . . 5 (𝜑 → ((2 − (1 / 2)) − (1 / 2)) = 1)
3624, 26, 353eqtrd 2860 . . . 4 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = 1)
3736eqcomd 2827 . . 3 (𝜑 → 1 = ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
38 2re 11712 . . . . . . . 8 2 ∈ ℝ
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4014, 39readdcld 10670 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ)
4140, 4jca 514 . . . . 5 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
42 resubcl 10950 . . . . 5 ((((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ∈ ℝ)
4341, 42syl 17 . . . 4 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ∈ ℝ)
44 dnibndlem10.3 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
4540, 7, 4, 44lesub1dd 11256 . . . 4 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ≤ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))
4643, 10, 15, 45lesub1dd 11256 . . 3 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤ (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
4737, 46eqbrtrd 5088 . 2 (𝜑 → 1 ≤ (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
48 flle 13170 . . . . 5 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2)))
495, 48syl 17 . . . 4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2)))
507, 4, 2lesubaddd 11237 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ≤ 𝐵 ↔ (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2))))
5149, 50mpbird 259 . . 3 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ≤ 𝐵)
52 fllep1 13172 . . . . . 6 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
5312, 52syl 17 . . . . 5 (𝜑 → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
5420, 22, 22addassd 10663 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
5531oveq2d 7172 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
5654, 55eqtrd 2856 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + 1))
5756eqcomd 2827 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
5853, 57breqtrd 5092 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
5911, 15, 4leadd1d 11234 . . . 4 (𝜑 → (𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))))
6058, 59mpbird 259 . . 3 (𝜑𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
6110, 11, 2, 15, 51, 60le2subd 11260 . 2 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤ (𝐵𝐴))
621, 18, 19, 47, 61letrd 10797 1 (𝜑 → 1 ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  1c1 10538   + caddc 10540  cle 10676  cmin 10870   / cdiv 11297  2c2 11693  cfl 13161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fl 13163
This theorem is referenced by:  dnibndlem12  33828
  Copyright terms: Public domain W3C validator