Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem10 Structured version   Visualization version   GIF version

Theorem dnibndlem10 36505
Description: Lemma for dnibnd 36509. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem10.1 (𝜑𝐴 ∈ ℝ)
dnibndlem10.2 (𝜑𝐵 ∈ ℝ)
dnibndlem10.3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem10 (𝜑 → 1 ≤ (𝐵𝐴))

Proof of Theorem dnibndlem10
StepHypRef Expression
1 1red 11236 . 2 (𝜑 → 1 ∈ ℝ)
2 dnibndlem10.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
3 halfre 12454 . . . . . . . . 9 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
52, 4readdcld 11264 . . . . . . 7 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
6 reflcl 13813 . . . . . . 7 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
75, 6syl 17 . . . . . 6 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
87, 4jca 511 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
9 resubcl 11547 . . . . 5 (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
108, 9syl 17 . . . 4 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
11 dnibndlem10.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1211, 4readdcld 11264 . . . . . 6 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
13 reflcl 13813 . . . . . 6 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1514, 4readdcld 11264 . . . 4 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
1610, 15jca 511 . . 3 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ))
17 resubcl 11547 . . 3 ((((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ∈ ℝ)
1816, 17syl 17 . 2 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ∈ ℝ)
192, 11resubcld 11665 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
2014recnd 11263 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
21 2cnd 12318 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
224recnd 11263 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
2320, 21, 22addsubassd 11614 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))))
2423oveq1d 7420 . . . . 5 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
2521, 22subcld 11594 . . . . . 6 (𝜑 → (2 − (1 / 2)) ∈ ℂ)
2620, 25, 22pnpcand 11631 . . . . 5 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = ((2 − (1 / 2)) − (1 / 2)))
2721, 22, 22subsub4d 11625 . . . . . 6 (𝜑 → ((2 − (1 / 2)) − (1 / 2)) = (2 − ((1 / 2) + (1 / 2))))
28 ax-1cn 11187 . . . . . . . . 9 1 ∈ ℂ
29 2halves 12459 . . . . . . . . 9 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
3028, 29ax-mp 5 . . . . . . . 8 ((1 / 2) + (1 / 2)) = 1
3130a1i 11 . . . . . . 7 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
3231oveq2d 7421 . . . . . 6 (𝜑 → (2 − ((1 / 2) + (1 / 2))) = (2 − 1))
33 2m1e1 12366 . . . . . . 7 (2 − 1) = 1
3433a1i 11 . . . . . 6 (𝜑 → (2 − 1) = 1)
3527, 32, 343eqtrd 2774 . . . . 5 (𝜑 → ((2 − (1 / 2)) − (1 / 2)) = 1)
3624, 26, 353eqtrd 2774 . . . 4 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = 1)
3736eqcomd 2741 . . 3 (𝜑 → 1 = ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
38 2re 12314 . . . . . . . 8 2 ∈ ℝ
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4014, 39readdcld 11264 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ)
4140, 4jca 511 . . . . 5 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
42 resubcl 11547 . . . . 5 ((((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ∈ ℝ)
4341, 42syl 17 . . . 4 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ∈ ℝ)
44 dnibndlem10.3 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
4540, 7, 4, 44lesub1dd 11853 . . . 4 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ≤ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))
4643, 10, 15, 45lesub1dd 11853 . . 3 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤ (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
4737, 46eqbrtrd 5141 . 2 (𝜑 → 1 ≤ (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
48 flle 13816 . . . . 5 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2)))
495, 48syl 17 . . . 4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2)))
507, 4, 2lesubaddd 11834 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ≤ 𝐵 ↔ (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2))))
5149, 50mpbird 257 . . 3 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ≤ 𝐵)
52 fllep1 13818 . . . . . 6 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
5312, 52syl 17 . . . . 5 (𝜑 → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
5420, 22, 22addassd 11257 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
5531oveq2d 7421 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
5654, 55eqtrd 2770 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + 1))
5756eqcomd 2741 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
5853, 57breqtrd 5145 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
5911, 15, 4leadd1d 11831 . . . 4 (𝜑 → (𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))))
6058, 59mpbird 257 . . 3 (𝜑𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
6110, 11, 2, 15, 51, 60le2subd 11857 . 2 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤ (𝐵𝐴))
621, 18, 19, 47, 61letrd 11392 1 (𝜑 → 1 ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  1c1 11130   + caddc 11132  cle 11270  cmin 11466   / cdiv 11894  2c2 12295  cfl 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fl 13809
This theorem is referenced by:  dnibndlem12  36507
  Copyright terms: Public domain W3C validator