Proof of Theorem dnibndlem10
Step | Hyp | Ref
| Expression |
1 | | 1red 10907 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
2 | | dnibndlem10.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | halfre 12117 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
4 | 3 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
5 | 2, 4 | readdcld 10935 |
. . . . . . 7
⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
6 | | reflcl 13444 |
. . . . . . 7
⊢ ((𝐵 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐵 +
(1 / 2))) ∈ ℝ) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℝ) |
8 | 7, 4 | jca 511 |
. . . . 5
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ
∧ (1 / 2) ∈ ℝ)) |
9 | | resubcl 11215 |
. . . . 5
⊢
(((⌊‘(𝐵
+ (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) →
((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) ∈ ℝ) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
∈ ℝ) |
11 | | dnibndlem10.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
12 | 11, 4 | readdcld 10935 |
. . . . . 6
⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
13 | | reflcl 13444 |
. . . . . 6
⊢ ((𝐴 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐴 +
(1 / 2))) ∈ ℝ) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℝ) |
15 | 14, 4 | readdcld 10935 |
. . . 4
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈
ℝ) |
16 | 10, 15 | jca 511 |
. . 3
⊢ (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈
ℝ)) |
17 | | resubcl 11215 |
. . 3
⊢
((((⌊‘(𝐵
+ (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈
ℝ) → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) −
((⌊‘(𝐴 + (1 /
2))) + (1 / 2))) ∈ ℝ) |
18 | 16, 17 | syl 17 |
. 2
⊢ (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
− ((⌊‘(𝐴
+ (1 / 2))) + (1 / 2))) ∈ ℝ) |
19 | 2, 11 | resubcld 11333 |
. 2
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
20 | 14 | recnd 10934 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℂ) |
21 | | 2cnd 11981 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℂ) |
22 | 4 | recnd 10934 |
. . . . . . 7
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
23 | 20, 21, 22 | addsubassd 11282 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 /
2)) = ((⌊‘(𝐴 +
(1 / 2))) + (2 − (1 / 2)))) |
24 | 23 | oveq1d 7270 |
. . . . 5
⊢ (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 /
2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) =
(((⌊‘(𝐴 + (1 /
2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))) |
25 | 21, 22 | subcld 11262 |
. . . . . 6
⊢ (𝜑 → (2 − (1 / 2)) ∈
ℂ) |
26 | 20, 25, 22 | pnpcand 11299 |
. . . . 5
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 /
2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = ((2 − (1 /
2)) − (1 / 2))) |
27 | 21, 22, 22 | subsub4d 11293 |
. . . . . 6
⊢ (𝜑 → ((2 − (1 / 2))
− (1 / 2)) = (2 − ((1 / 2) + (1 / 2)))) |
28 | | ax-1cn 10860 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
29 | | 2halves 12131 |
. . . . . . . . 9
⊢ (1 ∈
ℂ → ((1 / 2) + (1 / 2)) = 1) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
⊢ ((1 / 2)
+ (1 / 2)) = 1 |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2) + (1 / 2)) =
1) |
32 | 31 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → (2 − ((1 / 2) + (1 /
2))) = (2 − 1)) |
33 | | 2m1e1 12029 |
. . . . . . 7
⊢ (2
− 1) = 1 |
34 | 33 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (2 − 1) =
1) |
35 | 27, 32, 34 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ((2 − (1 / 2))
− (1 / 2)) = 1) |
36 | 24, 26, 35 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 /
2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) =
1) |
37 | 36 | eqcomd 2744 |
. . 3
⊢ (𝜑 → 1 =
((((⌊‘(𝐴 + (1 /
2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))) |
38 | | 2re 11977 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
39 | 38 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) |
40 | 14, 39 | readdcld 10935 |
. . . . . 6
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ∈
ℝ) |
41 | 40, 4 | jca 511 |
. . . . 5
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ
∧ (1 / 2) ∈ ℝ)) |
42 | | resubcl 11215 |
. . . . 5
⊢
((((⌊‘(𝐴
+ (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ) →
(((⌊‘(𝐴 + (1 /
2))) + 2) − (1 / 2)) ∈ ℝ) |
43 | 41, 42 | syl 17 |
. . . 4
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 /
2)) ∈ ℝ) |
44 | | dnibndlem10.3 |
. . . . 5
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤
(⌊‘(𝐵 + (1 /
2)))) |
45 | 40, 7, 4, 44 | lesub1dd 11521 |
. . . 4
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 /
2)) ≤ ((⌊‘(𝐵
+ (1 / 2))) − (1 / 2))) |
46 | 43, 10, 15, 45 | lesub1dd 11521 |
. . 3
⊢ (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 /
2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤
(((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))) |
47 | 37, 46 | eqbrtrd 5092 |
. 2
⊢ (𝜑 → 1 ≤
(((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))) |
48 | | flle 13447 |
. . . . 5
⊢ ((𝐵 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐵 +
(1 / 2))) ≤ (𝐵 + (1 /
2))) |
49 | 5, 48 | syl 17 |
. . . 4
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2))) |
50 | 7, 4, 2 | lesubaddd 11502 |
. . . 4
⊢ (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
≤ 𝐵 ↔
(⌊‘(𝐵 + (1 /
2))) ≤ (𝐵 + (1 /
2)))) |
51 | 49, 50 | mpbird 256 |
. . 3
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
≤ 𝐵) |
52 | | fllep1 13449 |
. . . . . 6
⊢ ((𝐴 + (1 / 2)) ∈ ℝ
→ (𝐴 + (1 / 2)) ≤
((⌊‘(𝐴 + (1 /
2))) + 1)) |
53 | 12, 52 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) +
1)) |
54 | 20, 22, 22 | addassd 10928 |
. . . . . . 7
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 /
2)) = ((⌊‘(𝐴 +
(1 / 2))) + ((1 / 2) + (1 / 2)))) |
55 | 31 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 /
2))) = ((⌊‘(𝐴 +
(1 / 2))) + 1)) |
56 | 54, 55 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 /
2)) = ((⌊‘(𝐴 +
(1 / 2))) + 1)) |
57 | 56 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) =
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) + (1 / 2))) |
58 | 53, 57 | breqtrd 5096 |
. . . 4
⊢ (𝜑 → (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 /
2))) |
59 | 11, 15, 4 | leadd1d 11499 |
. . . 4
⊢ (𝜑 → (𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) ≤
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) + (1 / 2)))) |
60 | 58, 59 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) |
61 | 10, 11, 2, 15, 51, 60 | le2subd 11525 |
. 2
⊢ (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
− ((⌊‘(𝐴
+ (1 / 2))) + (1 / 2))) ≤ (𝐵 − 𝐴)) |
62 | 1, 18, 19, 47, 61 | letrd 11062 |
1
⊢ (𝜑 → 1 ≤ (𝐵 − 𝐴)) |