Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem10 Structured version   Visualization version   GIF version

Theorem dnibndlem10 36470
Description: Lemma for dnibnd 36474. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem10.1 (𝜑𝐴 ∈ ℝ)
dnibndlem10.2 (𝜑𝐵 ∈ ℝ)
dnibndlem10.3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem10 (𝜑 → 1 ≤ (𝐵𝐴))

Proof of Theorem dnibndlem10
StepHypRef Expression
1 1red 11260 . 2 (𝜑 → 1 ∈ ℝ)
2 dnibndlem10.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
3 halfre 12478 . . . . . . . . 9 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
52, 4readdcld 11288 . . . . . . 7 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
6 reflcl 13833 . . . . . . 7 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
75, 6syl 17 . . . . . 6 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
87, 4jca 511 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
9 resubcl 11571 . . . . 5 (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
108, 9syl 17 . . . 4 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
11 dnibndlem10.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1211, 4readdcld 11288 . . . . . 6 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
13 reflcl 13833 . . . . . 6 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1514, 4readdcld 11288 . . . 4 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
1610, 15jca 511 . . 3 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ))
17 resubcl 11571 . . 3 ((((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ∈ ℝ)
1816, 17syl 17 . 2 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ∈ ℝ)
192, 11resubcld 11689 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
2014recnd 11287 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
21 2cnd 12342 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
224recnd 11287 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
2320, 21, 22addsubassd 11638 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))))
2423oveq1d 7446 . . . . 5 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
2521, 22subcld 11618 . . . . . 6 (𝜑 → (2 − (1 / 2)) ∈ ℂ)
2620, 25, 22pnpcand 11655 . . . . 5 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = ((2 − (1 / 2)) − (1 / 2)))
2721, 22, 22subsub4d 11649 . . . . . 6 (𝜑 → ((2 − (1 / 2)) − (1 / 2)) = (2 − ((1 / 2) + (1 / 2))))
28 ax-1cn 11211 . . . . . . . . 9 1 ∈ ℂ
29 2halves 12492 . . . . . . . . 9 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
3028, 29ax-mp 5 . . . . . . . 8 ((1 / 2) + (1 / 2)) = 1
3130a1i 11 . . . . . . 7 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
3231oveq2d 7447 . . . . . 6 (𝜑 → (2 − ((1 / 2) + (1 / 2))) = (2 − 1))
33 2m1e1 12390 . . . . . . 7 (2 − 1) = 1
3433a1i 11 . . . . . 6 (𝜑 → (2 − 1) = 1)
3527, 32, 343eqtrd 2779 . . . . 5 (𝜑 → ((2 − (1 / 2)) − (1 / 2)) = 1)
3624, 26, 353eqtrd 2779 . . . 4 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = 1)
3736eqcomd 2741 . . 3 (𝜑 → 1 = ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
38 2re 12338 . . . . . . . 8 2 ∈ ℝ
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4014, 39readdcld 11288 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ)
4140, 4jca 511 . . . . 5 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
42 resubcl 11571 . . . . 5 ((((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ∈ ℝ)
4341, 42syl 17 . . . 4 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ∈ ℝ)
44 dnibndlem10.3 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
4540, 7, 4, 44lesub1dd 11877 . . . 4 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ≤ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))
4643, 10, 15, 45lesub1dd 11877 . . 3 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤ (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
4737, 46eqbrtrd 5170 . 2 (𝜑 → 1 ≤ (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
48 flle 13836 . . . . 5 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2)))
495, 48syl 17 . . . 4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2)))
507, 4, 2lesubaddd 11858 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ≤ 𝐵 ↔ (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2))))
5149, 50mpbird 257 . . 3 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ≤ 𝐵)
52 fllep1 13838 . . . . . 6 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
5312, 52syl 17 . . . . 5 (𝜑 → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
5420, 22, 22addassd 11281 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
5531oveq2d 7447 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
5654, 55eqtrd 2775 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + 1))
5756eqcomd 2741 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
5853, 57breqtrd 5174 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
5911, 15, 4leadd1d 11855 . . . 4 (𝜑 → (𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))))
6058, 59mpbird 257 . . 3 (𝜑𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
6110, 11, 2, 15, 51, 60le2subd 11881 . 2 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤ (𝐵𝐴))
621, 18, 19, 47, 61letrd 11416 1 (𝜑 → 1 ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  1c1 11154   + caddc 11156  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  cfl 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fl 13829
This theorem is referenced by:  dnibndlem12  36472
  Copyright terms: Public domain W3C validator