Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem15 Structured version   Visualization version   GIF version

Theorem knoppndvlem15 34989
Description: Lemma for knoppndv 34997. (Contributed by Asger C. Ipsen, 6-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem15.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem15.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem15.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem15.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem15.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem15.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem15.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem15.m (𝜑𝑀 ∈ ℤ)
knoppndvlem15.n (𝜑𝑁 ∈ ℕ)
knoppndvlem15.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem15 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐵,𝑖,𝑛,𝑤,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑤)   𝑀(𝑤,𝑖)   𝑁(𝑤)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem15
StepHypRef Expression
1 knoppndvlem15.c . . . . . . . . . . 11 (𝜑𝐶 ∈ (-1(,)1))
21knoppndvlem3 34977 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
32simpld 495 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
43recnd 11183 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
54abscld 15321 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
6 knoppndvlem15.j . . . . . . 7 (𝜑𝐽 ∈ ℕ0)
75, 6reexpcld 14068 . . . . . 6 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
8 2re 12227 . . . . . . 7 2 ∈ ℝ
98a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
10 2ne0 12257 . . . . . . 7 2 ≠ 0
1110a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
127, 9, 11redivcld 11983 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
13 1red 11156 . . . . . 6 (𝜑 → 1 ∈ ℝ)
14 knoppndvlem15.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1514nnred 12168 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
169, 15remulcld 11185 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
1716, 5remulcld 11185 . . . . . . . 8 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
1817, 13resubcld 11583 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
19 0red 11158 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
20 0lt1 11677 . . . . . . . . . . 11 0 < 1
2120a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
22 knoppndvlem15.1 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
231, 14, 22knoppndvlem12 34986 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
2423simprd 496 . . . . . . . . . 10 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2519, 13, 18, 21, 24lttrd 11316 . . . . . . . . 9 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2618, 25jca 512 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
27 gt0ne0 11620 . . . . . . . 8 (((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2826, 27syl 17 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2913, 18, 28redivcld 11983 . . . . . 6 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
3013, 29resubcld 11583 . . . . 5 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
3112, 30remulcld 11185 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
32 knoppndvlem15.t . . . . . . . . 9 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
33 knoppndvlem15.f . . . . . . . . 9 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
34 knoppndvlem15.a . . . . . . . . . . 11 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
3534a1i 11 . . . . . . . . . 10 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
366nn0zd 12525 . . . . . . . . . . 11 (𝜑𝐽 ∈ ℤ)
37 knoppndvlem15.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3814, 36, 37knoppndvlem1 34975 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
3935, 38eqeltrd 2838 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
4032, 33, 14, 3, 39, 6knoppcnlem3 34958 . . . . . . . 8 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℝ)
4140recnd 11183 . . . . . . 7 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℂ)
42 knoppndvlem15.b . . . . . . . . . . 11 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
4342a1i 11 . . . . . . . . . 10 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
4437peano2zd 12610 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℤ)
4514, 36, 44knoppndvlem1 34975 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
4643, 45eqeltrd 2838 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
4732, 33, 14, 3, 46, 6knoppcnlem3 34958 . . . . . . . 8 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℝ)
4847recnd 11183 . . . . . . 7 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℂ)
4941, 48subcld 11512 . . . . . 6 (𝜑 → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) ∈ ℂ)
5049abscld 15321 . . . . 5 (𝜑 → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) ∈ ℝ)
5132, 33, 46, 3, 14knoppndvlem5 34979 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) ∈ ℝ)
5251recnd 11183 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) ∈ ℂ)
5332, 33, 39, 3, 14knoppndvlem5 34979 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) ∈ ℝ)
5453recnd 11183 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) ∈ ℂ)
5552, 54subcld 11512 . . . . . 6 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) ∈ ℂ)
5655abscld 15321 . . . . 5 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ∈ ℝ)
5750, 56resubcld 11583 . . . 4 (𝜑 → ((abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) − (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))) ∈ ℝ)
5849, 55subcld 11512 . . . . 5 (𝜑 → ((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ∈ ℂ)
5958abscld 15321 . . . 4 (𝜑 → (abs‘((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))) ∈ ℝ)
6012, 29jca 512 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) ∈ ℝ ∧ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ))
61 remulcl 11136 . . . . . . . 8 (((((abs‘𝐶)↑𝐽) / 2) ∈ ℝ ∧ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ) → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6260, 61syl 17 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6312, 62jca 512 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) ∈ ℝ ∧ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ))
64 resubcl 11465 . . . . . 6 (((((abs‘𝐶)↑𝐽) / 2) ∈ ℝ ∧ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ) → ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
6563, 64syl 17 . . . . 5 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
6612recnd 11183 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℂ)
67 1cnd 11150 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
6829recnd 11183 . . . . . . 7 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℂ)
6966, 67, 68subdid 11611 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((abs‘𝐶)↑𝐽) / 2) · 1) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7066mulid1d 11172 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · 1) = (((abs‘𝐶)↑𝐽) / 2))
7170oveq1d 7372 . . . . . . 7 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · 1) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7265leidd 11721 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7371, 72eqbrtrd 5127 . . . . . 6 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · 1) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7469, 73eqbrtrd 5127 . . . . 5 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7512, 29remulcld 11185 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
7612leidd 11721 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ≤ (((abs‘𝐶)↑𝐽) / 2))
7741, 48abssubd 15338 . . . . . . . . 9 (𝜑 → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))))
7832, 33, 34, 42, 1, 6, 37, 14knoppndvlem10 34984 . . . . . . . . 9 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
7977, 78eqtrd 2776 . . . . . . . 8 (𝜑 → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
8079eqcomd 2742 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
8176, 80breqtrd 5131 . . . . . 6 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ≤ (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
8232, 33, 34, 42, 1, 6, 37, 14, 22knoppndvlem14 34988 . . . . . 6 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
8312, 56, 50, 75, 81, 82le2subd 11775 . . . . 5 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) − (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))))
8431, 65, 57, 74, 83letrd 11312 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) − (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))))
8549, 55abs2difd 15342 . . . 4 (𝜑 → ((abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) − (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))) ≤ (abs‘((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))))
8631, 57, 59, 84, 85letrd 11312 . . 3 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))))
8749, 55abssubd 15338 . . 3 (𝜑 → (abs‘((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))) = (abs‘((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)))))
8886, 87breqtrd 5131 . 2 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)))))
89 knoppndvlem15.w . . . . . . . 8 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
9032, 33, 89, 42, 1, 6, 44, 14knoppndvlem6 34980 . . . . . . 7 (𝜑 → (𝑊𝐵) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐵)‘𝑖))
91 elnn0uz 12808 . . . . . . . . 9 (𝐽 ∈ ℕ0𝐽 ∈ (ℤ‘0))
926, 91sylib 217 . . . . . . . 8 (𝜑𝐽 ∈ (ℤ‘0))
9314adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝑁 ∈ ℕ)
943adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝐶 ∈ ℝ)
9546adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝐵 ∈ ℝ)
96 elfznn0 13534 . . . . . . . . . . 11 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℕ0)
9796adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℕ0)
9832, 33, 93, 94, 95, 97knoppcnlem3 34958 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐵)‘𝑖) ∈ ℝ)
9998recnd 11183 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐵)‘𝑖) ∈ ℂ)
100 fveq2 6842 . . . . . . . 8 (𝑖 = 𝐽 → ((𝐹𝐵)‘𝑖) = ((𝐹𝐵)‘𝐽))
10192, 99, 100fsumm1 15636 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐵)‘𝑖) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)))
10290, 101eqtrd 2776 . . . . . 6 (𝜑 → (𝑊𝐵) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)))
10332, 33, 89, 34, 1, 6, 37, 14knoppndvlem6 34980 . . . . . . 7 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
10439adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝐴 ∈ ℝ)
10532, 33, 93, 94, 104, 97knoppcnlem3 34958 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
106105recnd 11183 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
107 fveq2 6842 . . . . . . . 8 (𝑖 = 𝐽 → ((𝐹𝐴)‘𝑖) = ((𝐹𝐴)‘𝐽))
10892, 106, 107fsumm1 15636 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽)))
109103, 108eqtrd 2776 . . . . . 6 (𝜑 → (𝑊𝐴) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽)))
110102, 109oveq12d 7375 . . . . 5 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) = ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽))))
11152, 54, 41, 48subadd4d 11560 . . . . . 6 (𝜑 → ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽))))
112111eqcomd 2742 . . . . 5 (𝜑 → ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽))) = ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
113110, 112eqtrd 2776 . . . 4 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) = ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
114113fveq2d 6846 . . 3 (𝜑 → (abs‘((𝑊𝐵) − (𝑊𝐴))) = (abs‘((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)))))
115114eqcomd 2742 . 2 (𝜑 → (abs‘((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)))) = (abs‘((𝑊𝐵) − (𝑊𝐴))))
11688, 115breqtrd 5131 1 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  (,)cioo 13264  ...cfz 13424  cfl 13695  cexp 13967  abscabs 15119  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ioo 13268  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-dvds 16137  df-ulm 25736
This theorem is referenced by:  knoppndvlem17  34991
  Copyright terms: Public domain W3C validator