Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem15 Structured version   Visualization version   GIF version

Theorem knoppndvlem15 33425
Description: Lemma for knoppndv 33433. (Contributed by Asger C. Ipsen, 6-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem15.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem15.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem15.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem15.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem15.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem15.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem15.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem15.m (𝜑𝑀 ∈ ℤ)
knoppndvlem15.n (𝜑𝑁 ∈ ℕ)
knoppndvlem15.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem15 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐵,𝑖,𝑛,𝑤,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑤)   𝑀(𝑤,𝑖)   𝑁(𝑤)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem15
StepHypRef Expression
1 knoppndvlem15.c . . . . . . . . . . 11 (𝜑𝐶 ∈ (-1(,)1))
21knoppndvlem3 33413 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
32simpld 487 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
43recnd 10474 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
54abscld 14663 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
6 knoppndvlem15.j . . . . . . 7 (𝜑𝐽 ∈ ℕ0)
75, 6reexpcld 13348 . . . . . 6 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
8 2re 11520 . . . . . . 7 2 ∈ ℝ
98a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
10 2ne0 11557 . . . . . . 7 2 ≠ 0
1110a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
127, 9, 11redivcld 11275 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
13 1red 10446 . . . . . 6 (𝜑 → 1 ∈ ℝ)
14 knoppndvlem15.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1514nnred 11462 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
169, 15remulcld 10476 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
1716, 5remulcld 10476 . . . . . . . 8 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
1817, 13resubcld 10875 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
19 0red 10449 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
20 0lt1 10969 . . . . . . . . . . 11 0 < 1
2120a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
22 knoppndvlem15.1 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
231, 14, 22knoppndvlem12 33422 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
2423simprd 488 . . . . . . . . . 10 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2519, 13, 18, 21, 24lttrd 10607 . . . . . . . . 9 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2618, 25jca 504 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
27 gt0ne0 10912 . . . . . . . 8 (((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2826, 27syl 17 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2913, 18, 28redivcld 11275 . . . . . 6 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
3013, 29resubcld 10875 . . . . 5 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
3112, 30remulcld 10476 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
32 knoppndvlem15.t . . . . . . . . 9 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
33 knoppndvlem15.f . . . . . . . . 9 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
34 knoppndvlem15.a . . . . . . . . . . 11 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
3534a1i 11 . . . . . . . . . 10 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
366nn0zd 11904 . . . . . . . . . . 11 (𝜑𝐽 ∈ ℤ)
37 knoppndvlem15.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3814, 36, 37knoppndvlem1 33411 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
3935, 38eqeltrd 2868 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
4032, 33, 14, 3, 39, 6knoppcnlem3 33394 . . . . . . . 8 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℝ)
4140recnd 10474 . . . . . . 7 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℂ)
42 knoppndvlem15.b . . . . . . . . . . 11 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
4342a1i 11 . . . . . . . . . 10 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
4437peano2zd 11909 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℤ)
4514, 36, 44knoppndvlem1 33411 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
4643, 45eqeltrd 2868 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
4732, 33, 14, 3, 46, 6knoppcnlem3 33394 . . . . . . . 8 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℝ)
4847recnd 10474 . . . . . . 7 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℂ)
4941, 48subcld 10804 . . . . . 6 (𝜑 → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) ∈ ℂ)
5049abscld 14663 . . . . 5 (𝜑 → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) ∈ ℝ)
5132, 33, 46, 3, 14knoppndvlem5 33415 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) ∈ ℝ)
5251recnd 10474 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) ∈ ℂ)
5332, 33, 39, 3, 14knoppndvlem5 33415 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) ∈ ℝ)
5453recnd 10474 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) ∈ ℂ)
5552, 54subcld 10804 . . . . . 6 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) ∈ ℂ)
5655abscld 14663 . . . . 5 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ∈ ℝ)
5750, 56resubcld 10875 . . . 4 (𝜑 → ((abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) − (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))) ∈ ℝ)
5849, 55subcld 10804 . . . . 5 (𝜑 → ((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ∈ ℂ)
5958abscld 14663 . . . 4 (𝜑 → (abs‘((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))) ∈ ℝ)
6012, 29jca 504 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) ∈ ℝ ∧ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ))
61 remulcl 10426 . . . . . . . 8 (((((abs‘𝐶)↑𝐽) / 2) ∈ ℝ ∧ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ) → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6260, 61syl 17 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6312, 62jca 504 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) ∈ ℝ ∧ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ))
64 resubcl 10757 . . . . . 6 (((((abs‘𝐶)↑𝐽) / 2) ∈ ℝ ∧ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ) → ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
6563, 64syl 17 . . . . 5 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
6612recnd 10474 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℂ)
67 1cnd 10440 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
6829recnd 10474 . . . . . . 7 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℂ)
6966, 67, 68subdid 10903 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((abs‘𝐶)↑𝐽) / 2) · 1) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7066mulid1d 10463 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · 1) = (((abs‘𝐶)↑𝐽) / 2))
7170oveq1d 6997 . . . . . . 7 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · 1) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7265leidd 11013 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7371, 72eqbrtrd 4956 . . . . . 6 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · 1) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7469, 73eqbrtrd 4956 . . . . 5 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7512, 29remulcld 10476 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
7612leidd 11013 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ≤ (((abs‘𝐶)↑𝐽) / 2))
7741, 48abssubd 14680 . . . . . . . . 9 (𝜑 → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))))
7832, 33, 34, 42, 1, 6, 37, 14knoppndvlem10 33420 . . . . . . . . 9 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
7977, 78eqtrd 2816 . . . . . . . 8 (𝜑 → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
8079eqcomd 2786 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
8176, 80breqtrd 4960 . . . . . 6 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ≤ (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
8232, 33, 34, 42, 1, 6, 37, 14, 22knoppndvlem14 33424 . . . . . 6 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
8312, 56, 50, 75, 81, 82le2subd 11067 . . . . 5 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) − ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) − (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))))
8431, 65, 57, 74, 83letrd 10603 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) − (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))))
8549, 55abs2difd 14684 . . . 4 (𝜑 → ((abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) − (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))) ≤ (abs‘((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))))
8631, 57, 59, 84, 85letrd 10603 . . 3 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))))
8749, 55abssubd 14680 . . 3 (𝜑 → (abs‘((((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))) = (abs‘((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)))))
8886, 87breqtrd 4960 . 2 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)))))
89 knoppndvlem15.w . . . . . . . 8 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
9032, 33, 89, 42, 1, 6, 44, 14knoppndvlem6 33416 . . . . . . 7 (𝜑 → (𝑊𝐵) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐵)‘𝑖))
91 elnn0uz 12103 . . . . . . . . 9 (𝐽 ∈ ℕ0𝐽 ∈ (ℤ‘0))
926, 91sylib 210 . . . . . . . 8 (𝜑𝐽 ∈ (ℤ‘0))
9314adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝑁 ∈ ℕ)
943adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝐶 ∈ ℝ)
9546adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝐵 ∈ ℝ)
96 elfznn0 12822 . . . . . . . . . . 11 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℕ0)
9796adantl 474 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℕ0)
9832, 33, 93, 94, 95, 97knoppcnlem3 33394 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐵)‘𝑖) ∈ ℝ)
9998recnd 10474 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐵)‘𝑖) ∈ ℂ)
100 fveq2 6504 . . . . . . . 8 (𝑖 = 𝐽 → ((𝐹𝐵)‘𝑖) = ((𝐹𝐵)‘𝐽))
10192, 99, 100fsumm1 14972 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐵)‘𝑖) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)))
10290, 101eqtrd 2816 . . . . . 6 (𝜑 → (𝑊𝐵) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)))
10332, 33, 89, 34, 1, 6, 37, 14knoppndvlem6 33416 . . . . . . 7 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
10439adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐽)) → 𝐴 ∈ ℝ)
10532, 33, 93, 94, 104, 97knoppcnlem3 33394 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
106105recnd 10474 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐽)) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
107 fveq2 6504 . . . . . . . 8 (𝑖 = 𝐽 → ((𝐹𝐴)‘𝑖) = ((𝐹𝐴)‘𝐽))
10892, 106, 107fsumm1 14972 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽)))
109103, 108eqtrd 2816 . . . . . 6 (𝜑 → (𝑊𝐴) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽)))
110102, 109oveq12d 7000 . . . . 5 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) = ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽))))
11152, 54, 41, 48subadd4d 10852 . . . . . 6 (𝜑 → ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽))))
112111eqcomd 2786 . . . . 5 (𝜑 → ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) + ((𝐹𝐵)‘𝐽)) − (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) + ((𝐹𝐴)‘𝐽))) = ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
113110, 112eqtrd 2816 . . . 4 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) = ((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
114113fveq2d 6508 . . 3 (𝜑 → (abs‘((𝑊𝐵) − (𝑊𝐴))) = (abs‘((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)))))
115114eqcomd 2786 . 2 (𝜑 → (abs‘((Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) − (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)))) = (abs‘((𝑊𝐵) − (𝑊𝐴))))
11688, 115breqtrd 4960 1 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wne 2969   class class class wbr 4934  cmpt 5013  cfv 6193  (class class class)co 6982  cr 10340  0cc0 10341  1c1 10342   + caddc 10344   · cmul 10346   < clt 10480  cle 10481  cmin 10676  -cneg 10677   / cdiv 11104  cn 11445  2c2 11501  0cn0 11713  cz 11799  cuz 12064  (,)cioo 12560  ...cfz 12714  cfl 12981  cexp 13250  abscabs 14460  Σcsu 14909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420  ax-mulf 10421
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-sup 8707  df-inf 8708  df-oi 8775  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-z 11800  df-uz 12065  df-rp 12211  df-ioo 12564  df-ico 12566  df-fz 12715  df-fzo 12856  df-fl 12983  df-seq 13191  df-exp 13251  df-hash 13512  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-limsup 14695  df-clim 14712  df-rlim 14713  df-sum 14910  df-dvds 15474  df-ulm 24683
This theorem is referenced by:  knoppndvlem17  33427
  Copyright terms: Public domain W3C validator