| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc2ditg | Structured version Visualization version GIF version | ||
| Description: Directed integral analogue of ftc2 25973. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| Ref | Expression |
|---|---|
| ftc2ditg.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| ftc2ditg.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| ftc2ditg.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) |
| ftc2ditg.b | ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) |
| ftc2ditg.c | ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| ftc2ditg.i | ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) |
| ftc2ditg.f | ⊢ (𝜑 → 𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ)) |
| Ref | Expression |
|---|---|
| ftc2ditg | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc2ditg.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 2 | ftc2ditg.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 3 | iccssre 13324 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋[,]𝑌) ⊆ ℝ) |
| 5 | ftc2ditg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) | |
| 6 | 4, 5 | sseldd 3930 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 7 | ftc2ditg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) | |
| 8 | 4, 7 | sseldd 3930 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | ftc2ditg.c | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ)) | |
| 10 | ftc2ditg.i | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) | |
| 11 | ftc2ditg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ)) | |
| 12 | 1, 2, 5, 7, 9, 10, 11 | ftc2ditglem 25974 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 13 | fvexd 6832 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ((ℝ D 𝐹)‘𝑡) ∈ V) | |
| 14 | cncff 24808 | . . . . . . . 8 ⊢ ((ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ) → (ℝ D 𝐹):(𝑋(,)𝑌)⟶ℂ) | |
| 15 | 9, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹):(𝑋(,)𝑌)⟶ℂ) |
| 16 | 15 | feqmptd 6885 | . . . . . 6 ⊢ (𝜑 → (ℝ D 𝐹) = (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡))) |
| 17 | 16, 10 | eqeltrrd 2832 | . . . . 5 ⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((ℝ D 𝐹)‘𝑡)) ∈ 𝐿1) |
| 18 | 1, 2, 7, 5, 13, 17 | ditgswap 25782 | . . . 4 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = -⨜[𝐵 → 𝐴]((ℝ D 𝐹)‘𝑡) d𝑡) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = -⨜[𝐵 → 𝐴]((ℝ D 𝐹)‘𝑡) d𝑡) |
| 20 | 1, 2, 7, 5, 9, 10, 11 | ftc2ditglem 25974 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐴) − (𝐹‘𝐵))) |
| 21 | 20 | negeqd 11349 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → -⨜[𝐵 → 𝐴]((ℝ D 𝐹)‘𝑡) d𝑡 = -((𝐹‘𝐴) − (𝐹‘𝐵))) |
| 22 | cncff 24808 | . . . . . . 7 ⊢ (𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ) → 𝐹:(𝑋[,]𝑌)⟶ℂ) | |
| 23 | 11, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:(𝑋[,]𝑌)⟶ℂ) |
| 24 | 23, 5 | ffvelcdmd 7013 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
| 25 | 23, 7 | ffvelcdmd 7013 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℂ) |
| 26 | 24, 25 | negsubdi2d 11483 | . . . 4 ⊢ (𝜑 → -((𝐹‘𝐴) − (𝐹‘𝐵)) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → -((𝐹‘𝐴) − (𝐹‘𝐵)) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 28 | 19, 21, 27 | 3eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| 29 | 6, 8, 12, 28 | lecasei 11214 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 ≤ cle 11142 − cmin 11339 -cneg 11340 (,)cioo 13240 [,]cicc 13243 –cn→ccncf 24791 𝐿1cibl 25540 ⨜cdit 25769 D cdv 25786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-symdif 4198 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-disj 5054 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-ovol 25387 df-vol 25388 df-mbf 25542 df-itg1 25543 df-itg2 25544 df-ibl 25545 df-itg 25546 df-0p 25593 df-ditg 25770 df-limc 25789 df-dv 25790 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |