MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcong Structured version   Visualization version   GIF version

Theorem mndodcong 18274
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcong (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcong
StepHypRef Expression
1 oveq1 6885 . . 3 ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
2 simp2l 1257 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℕ0)
32nn0zd 11770 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℤ)
4 simp3 1169 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
53, 4zmodcld 12946 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
65adantr 473 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
76nn0red 11641 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℝ)
8 simp2r 1258 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
98nn0zd 11770 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
109, 4zmodcld 12946 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1110adantr 473 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1211nn0red 11641 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
13 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
14 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
15 odid.3 . . . . . 6 · = (.g𝐺)
16 odid.4 . . . . . 6 0 = (0g𝐺)
17 simp1l 1255 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
1817adantr 473 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐺 ∈ Mnd)
19 simp1r 1256 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
2019adantr 473 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐴𝑋)
214adantr 473 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑂𝐴) ∈ ℕ)
222nn0red 11641 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℝ)
234nnrpd 12115 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
24 modlt 12934 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2522, 23, 24syl2anc 580 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2625adantr 473 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
278nn0red 11641 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
28 modlt 12934 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
2927, 23, 28syl2anc 580 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
3029adantr 473 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
31 simpr 478 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
3213, 14, 15, 16, 18, 20, 21, 6, 11, 26, 30, 31mndodconglem 18273 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑀 mod (𝑂𝐴)) ≤ (𝑁 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3331eqcomd 2805 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑀 mod (𝑂𝐴)) · 𝐴))
3413, 14, 15, 16, 18, 20, 21, 11, 6, 30, 26, 33mndodconglem 18273 . . . . . 6 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑁 mod (𝑂𝐴)) = (𝑀 mod (𝑂𝐴)))
3534eqcomd 2805 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
367, 12, 32, 35lecasei 10433 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3736ex 402 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴))))
381, 37impbid2 218 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)))
39 moddvds 15330 . . 3 (((𝑂𝐴) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
404, 3, 9, 39syl3anc 1491 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
4113, 14, 15, 16odmodnn0 18272 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑀 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4217, 19, 2, 4, 41syl31anc 1493 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4313, 14, 15, 16odmodnn0 18272 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4417, 19, 8, 4, 43syl31anc 1493 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4542, 44eqeq12d 2814 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
4638, 40, 453bitr3d 301 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157   class class class wbr 4843  cfv 6101  (class class class)co 6878  cr 10223   < clt 10363  cle 10364  cmin 10556  cn 11312  0cn0 11580  cz 11666  +crp 12074   mod cmo 12923  cdvds 15319  Basecbs 16184  0gc0g 16415  Mndcmnd 17609  .gcmg 17856  odcod 18257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-fz 12581  df-fl 12848  df-mod 12924  df-seq 13056  df-dvds 15320  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mulg 17857  df-od 18261
This theorem is referenced by:  mndodcongi  18275  oddvdsnn0  18276
  Copyright terms: Public domain W3C validator