Proof of Theorem mndodcong
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7438 |
. . 3
⊢ ((𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)) → ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) |
| 2 | | simp2l 1200 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑀 ∈
ℕ0) |
| 3 | 2 | nn0zd 12639 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑀 ∈
ℤ) |
| 4 | | simp3 1139 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℕ) |
| 5 | 3, 4 | zmodcld 13932 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑀 mod (𝑂‘𝐴)) ∈
ℕ0) |
| 6 | 5 | adantr 480 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑀 mod (𝑂‘𝐴)) ∈
ℕ0) |
| 7 | 6 | nn0red 12588 |
. . . . 5
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑀 mod (𝑂‘𝐴)) ∈ ℝ) |
| 8 | | simp2r 1201 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈
ℕ0) |
| 9 | 8 | nn0zd 12639 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈
ℤ) |
| 10 | 9, 4 | zmodcld 13932 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) ∈
ℕ0) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑁 mod (𝑂‘𝐴)) ∈
ℕ0) |
| 12 | 11 | nn0red 12588 |
. . . . 5
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑁 mod (𝑂‘𝐴)) ∈ ℝ) |
| 13 | | odcl.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
| 14 | | odcl.2 |
. . . . . 6
⊢ 𝑂 = (od‘𝐺) |
| 15 | | odid.3 |
. . . . . 6
⊢ · =
(.g‘𝐺) |
| 16 | | odid.4 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
| 17 | | simp1l 1198 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝐺 ∈ Mnd) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → 𝐺 ∈ Mnd) |
| 19 | | simp1r 1199 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝐴 ∈ 𝑋) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → 𝐴 ∈ 𝑋) |
| 21 | 4 | adantr 480 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑂‘𝐴) ∈ ℕ) |
| 22 | 2 | nn0red 12588 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑀 ∈
ℝ) |
| 23 | 4 | nnrpd 13075 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈
ℝ+) |
| 24 | | modlt 13920 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) → (𝑀 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
| 25 | 22, 23, 24 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑀 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
| 26 | 25 | adantr 480 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑀 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
| 27 | 8 | nn0red 12588 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈
ℝ) |
| 28 | | modlt 13920 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
| 29 | 27, 23, 28 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
| 31 | | simpr 484 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) |
| 32 | 13, 14, 15, 16, 18, 20, 21, 6, 11, 26, 30, 31 | mndodconglem 19559 |
. . . . 5
⊢
(((((𝐺 ∈ Mnd
∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) ∧ (𝑀 mod (𝑂‘𝐴)) ≤ (𝑁 mod (𝑂‘𝐴))) → (𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴))) |
| 33 | 31 | eqcomd 2743 |
. . . . . . 7
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = ((𝑀 mod (𝑂‘𝐴)) · 𝐴)) |
| 34 | 13, 14, 15, 16, 18, 20, 21, 11, 6, 30, 26, 33 | mndodconglem 19559 |
. . . . . 6
⊢
(((((𝐺 ∈ Mnd
∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂‘𝐴)) ≤ (𝑀 mod (𝑂‘𝐴))) → (𝑁 mod (𝑂‘𝐴)) = (𝑀 mod (𝑂‘𝐴))) |
| 35 | 34 | eqcomd 2743 |
. . . . 5
⊢
(((((𝐺 ∈ Mnd
∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂‘𝐴)) ≤ (𝑀 mod (𝑂‘𝐴))) → (𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴))) |
| 36 | 7, 12, 32, 35 | lecasei 11367 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴))) |
| 37 | 36 | ex 412 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) →
(((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴) → (𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)))) |
| 38 | 1, 37 | impbid2 226 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)) ↔ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴))) |
| 39 | | moddvds 16301 |
. . 3
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)) ↔ (𝑂‘𝐴) ∥ (𝑀 − 𝑁))) |
| 40 | 4, 3, 9, 39 | syl3anc 1373 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)) ↔ (𝑂‘𝐴) ∥ (𝑀 − 𝑁))) |
| 41 | 13, 14, 15, 16 | odmodnn0 19558 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑀 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = (𝑀 · 𝐴)) |
| 42 | 17, 19, 2, 4, 41 | syl31anc 1375 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = (𝑀 · 𝐴)) |
| 43 | 13, 14, 15, 16 | odmodnn0 19558 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) |
| 44 | 17, 19, 8, 4, 43 | syl31anc 1375 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) |
| 45 | 42, 44 | eqeq12d 2753 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) →
(((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 46 | 38, 40, 45 | 3bitr3d 309 |
1
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |