MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcong Structured version   Visualization version   GIF version

Theorem mndodcong 19479
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcong (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcong
StepHypRef Expression
1 oveq1 7397 . . 3 ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
2 simp2l 1200 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℕ0)
32nn0zd 12562 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℤ)
4 simp3 1138 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
53, 4zmodcld 13861 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
65adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
76nn0red 12511 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℝ)
8 simp2r 1201 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
98nn0zd 12562 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
109, 4zmodcld 13861 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1110adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1211nn0red 12511 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
13 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
14 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
15 odid.3 . . . . . 6 · = (.g𝐺)
16 odid.4 . . . . . 6 0 = (0g𝐺)
17 simp1l 1198 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
1817adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐺 ∈ Mnd)
19 simp1r 1199 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
2019adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐴𝑋)
214adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑂𝐴) ∈ ℕ)
222nn0red 12511 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℝ)
234nnrpd 13000 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
24 modlt 13849 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2522, 23, 24syl2anc 584 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2625adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
278nn0red 12511 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
28 modlt 13849 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
2927, 23, 28syl2anc 584 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
3029adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
31 simpr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
3213, 14, 15, 16, 18, 20, 21, 6, 11, 26, 30, 31mndodconglem 19478 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑀 mod (𝑂𝐴)) ≤ (𝑁 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3331eqcomd 2736 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑀 mod (𝑂𝐴)) · 𝐴))
3413, 14, 15, 16, 18, 20, 21, 11, 6, 30, 26, 33mndodconglem 19478 . . . . . 6 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑁 mod (𝑂𝐴)) = (𝑀 mod (𝑂𝐴)))
3534eqcomd 2736 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
367, 12, 32, 35lecasei 11287 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3736ex 412 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴))))
381, 37impbid2 226 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)))
39 moddvds 16240 . . 3 (((𝑂𝐴) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
404, 3, 9, 39syl3anc 1373 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
4113, 14, 15, 16odmodnn0 19477 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑀 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4217, 19, 2, 4, 41syl31anc 1375 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4313, 14, 15, 16odmodnn0 19477 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4417, 19, 8, 4, 43syl31anc 1375 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4542, 44eqeq12d 2746 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
4638, 40, 453bitr3d 309 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074   < clt 11215  cle 11216  cmin 11412  cn 12193  0cn0 12449  cz 12536  +crp 12958   mod cmo 13838  cdvds 16229  Basecbs 17186  0gc0g 17409  Mndcmnd 18668  .gcmg 19006  odcod 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-dvds 16230  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mulg 19007  df-od 19465
This theorem is referenced by:  mndodcongi  19480  oddvdsnn0  19481
  Copyright terms: Public domain W3C validator