Proof of Theorem mndodcong
Step | Hyp | Ref
| Expression |
1 | | oveq1 7282 |
. . 3
⊢ ((𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)) → ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) |
2 | | simp2l 1198 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑀 ∈
ℕ0) |
3 | 2 | nn0zd 12424 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑀 ∈
ℤ) |
4 | | simp3 1137 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℕ) |
5 | 3, 4 | zmodcld 13612 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑀 mod (𝑂‘𝐴)) ∈
ℕ0) |
6 | 5 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑀 mod (𝑂‘𝐴)) ∈
ℕ0) |
7 | 6 | nn0red 12294 |
. . . . 5
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑀 mod (𝑂‘𝐴)) ∈ ℝ) |
8 | | simp2r 1199 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈
ℕ0) |
9 | 8 | nn0zd 12424 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈
ℤ) |
10 | 9, 4 | zmodcld 13612 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) ∈
ℕ0) |
11 | 10 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑁 mod (𝑂‘𝐴)) ∈
ℕ0) |
12 | 11 | nn0red 12294 |
. . . . 5
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑁 mod (𝑂‘𝐴)) ∈ ℝ) |
13 | | odcl.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
14 | | odcl.2 |
. . . . . 6
⊢ 𝑂 = (od‘𝐺) |
15 | | odid.3 |
. . . . . 6
⊢ · =
(.g‘𝐺) |
16 | | odid.4 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
17 | | simp1l 1196 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝐺 ∈ Mnd) |
18 | 17 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → 𝐺 ∈ Mnd) |
19 | | simp1r 1197 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝐴 ∈ 𝑋) |
20 | 19 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → 𝐴 ∈ 𝑋) |
21 | 4 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑂‘𝐴) ∈ ℕ) |
22 | 2 | nn0red 12294 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑀 ∈
ℝ) |
23 | 4 | nnrpd 12770 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈
ℝ+) |
24 | | modlt 13600 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) → (𝑀 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
25 | 22, 23, 24 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑀 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
26 | 25 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑀 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
27 | 8 | nn0red 12294 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈
ℝ) |
28 | | modlt 13600 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
29 | 27, 23, 28 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
30 | 29 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
31 | | simpr 485 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) |
32 | 13, 14, 15, 16, 18, 20, 21, 6, 11, 26, 30, 31 | mndodconglem 19149 |
. . . . 5
⊢
(((((𝐺 ∈ Mnd
∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) ∧ (𝑀 mod (𝑂‘𝐴)) ≤ (𝑁 mod (𝑂‘𝐴))) → (𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴))) |
33 | 31 | eqcomd 2744 |
. . . . . . 7
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = ((𝑀 mod (𝑂‘𝐴)) · 𝐴)) |
34 | 13, 14, 15, 16, 18, 20, 21, 11, 6, 30, 26, 33 | mndodconglem 19149 |
. . . . . 6
⊢
(((((𝐺 ∈ Mnd
∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂‘𝐴)) ≤ (𝑀 mod (𝑂‘𝐴))) → (𝑁 mod (𝑂‘𝐴)) = (𝑀 mod (𝑂‘𝐴))) |
35 | 34 | eqcomd 2744 |
. . . . 5
⊢
(((((𝐺 ∈ Mnd
∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂‘𝐴)) ≤ (𝑀 mod (𝑂‘𝐴))) → (𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴))) |
36 | 7, 12, 32, 35 | lecasei 11081 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴)) → (𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴))) |
37 | 36 | ex 413 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) →
(((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴) → (𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)))) |
38 | 1, 37 | impbid2 225 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)) ↔ ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴))) |
39 | | moddvds 15974 |
. . 3
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)) ↔ (𝑂‘𝐴) ∥ (𝑀 − 𝑁))) |
40 | 4, 3, 9, 39 | syl3anc 1370 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑀 mod (𝑂‘𝐴)) = (𝑁 mod (𝑂‘𝐴)) ↔ (𝑂‘𝐴) ∥ (𝑀 − 𝑁))) |
41 | 13, 14, 15, 16 | odmodnn0 19148 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑀 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = (𝑀 · 𝐴)) |
42 | 17, 19, 2, 4, 41 | syl31anc 1372 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑀 mod (𝑂‘𝐴)) · 𝐴) = (𝑀 · 𝐴)) |
43 | 13, 14, 15, 16 | odmodnn0 19148 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) |
44 | 17, 19, 8, 4, 43 | syl31anc 1372 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) |
45 | 42, 44 | eqeq12d 2754 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) →
(((𝑀 mod (𝑂‘𝐴)) · 𝐴) = ((𝑁 mod (𝑂‘𝐴)) · 𝐴) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
46 | 38, 40, 45 | 3bitr3d 309 |
1
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |