MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcong Structured version   Visualization version   GIF version

Theorem mndodcong 19065
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcong (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcong
StepHypRef Expression
1 oveq1 7262 . . 3 ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
2 simp2l 1197 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℕ0)
32nn0zd 12353 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℤ)
4 simp3 1136 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
53, 4zmodcld 13540 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
65adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
76nn0red 12224 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℝ)
8 simp2r 1198 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
98nn0zd 12353 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
109, 4zmodcld 13540 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1110adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1211nn0red 12224 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
13 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
14 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
15 odid.3 . . . . . 6 · = (.g𝐺)
16 odid.4 . . . . . 6 0 = (0g𝐺)
17 simp1l 1195 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
1817adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐺 ∈ Mnd)
19 simp1r 1196 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
2019adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐴𝑋)
214adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑂𝐴) ∈ ℕ)
222nn0red 12224 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℝ)
234nnrpd 12699 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
24 modlt 13528 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2522, 23, 24syl2anc 583 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2625adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
278nn0red 12224 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
28 modlt 13528 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
2927, 23, 28syl2anc 583 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
3029adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
31 simpr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
3213, 14, 15, 16, 18, 20, 21, 6, 11, 26, 30, 31mndodconglem 19064 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑀 mod (𝑂𝐴)) ≤ (𝑁 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3331eqcomd 2744 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑀 mod (𝑂𝐴)) · 𝐴))
3413, 14, 15, 16, 18, 20, 21, 11, 6, 30, 26, 33mndodconglem 19064 . . . . . 6 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑁 mod (𝑂𝐴)) = (𝑀 mod (𝑂𝐴)))
3534eqcomd 2744 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
367, 12, 32, 35lecasei 11011 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3736ex 412 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴))))
381, 37impbid2 225 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)))
39 moddvds 15902 . . 3 (((𝑂𝐴) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
404, 3, 9, 39syl3anc 1369 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
4113, 14, 15, 16odmodnn0 19063 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑀 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4217, 19, 2, 4, 41syl31anc 1371 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4313, 14, 15, 16odmodnn0 19063 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4417, 19, 8, 4, 43syl31anc 1371 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4542, 44eqeq12d 2754 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
4638, 40, 453bitr3d 308 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  +crp 12659   mod cmo 13517  cdvds 15891  Basecbs 16840  0gc0g 17067  Mndcmnd 18300  .gcmg 18615  odcod 19047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-dvds 15892  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mulg 18616  df-od 19051
This theorem is referenced by:  mndodcongi  19066  oddvdsnn0  19067
  Copyright terms: Public domain W3C validator