MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcong Structured version   Visualization version   GIF version

Theorem mndodcong 19584
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcong (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcong
StepHypRef Expression
1 oveq1 7455 . . 3 ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
2 simp2l 1199 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℕ0)
32nn0zd 12665 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℤ)
4 simp3 1138 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
53, 4zmodcld 13943 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
65adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
76nn0red 12614 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℝ)
8 simp2r 1200 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
98nn0zd 12665 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
109, 4zmodcld 13943 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1110adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1211nn0red 12614 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
13 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
14 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
15 odid.3 . . . . . 6 · = (.g𝐺)
16 odid.4 . . . . . 6 0 = (0g𝐺)
17 simp1l 1197 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
1817adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐺 ∈ Mnd)
19 simp1r 1198 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
2019adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐴𝑋)
214adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑂𝐴) ∈ ℕ)
222nn0red 12614 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℝ)
234nnrpd 13097 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
24 modlt 13931 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2522, 23, 24syl2anc 583 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2625adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
278nn0red 12614 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
28 modlt 13931 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
2927, 23, 28syl2anc 583 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
3029adantr 480 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
31 simpr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
3213, 14, 15, 16, 18, 20, 21, 6, 11, 26, 30, 31mndodconglem 19583 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑀 mod (𝑂𝐴)) ≤ (𝑁 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3331eqcomd 2746 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑀 mod (𝑂𝐴)) · 𝐴))
3413, 14, 15, 16, 18, 20, 21, 11, 6, 30, 26, 33mndodconglem 19583 . . . . . 6 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑁 mod (𝑂𝐴)) = (𝑀 mod (𝑂𝐴)))
3534eqcomd 2746 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
367, 12, 32, 35lecasei 11396 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3736ex 412 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴))))
381, 37impbid2 226 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)))
39 moddvds 16313 . . 3 (((𝑂𝐴) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
404, 3, 9, 39syl3anc 1371 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
4113, 14, 15, 16odmodnn0 19582 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑀 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4217, 19, 2, 4, 41syl31anc 1373 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4313, 14, 15, 16odmodnn0 19582 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4417, 19, 8, 4, 43syl31anc 1373 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4542, 44eqeq12d 2756 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
4638, 40, 453bitr3d 309 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  +crp 13057   mod cmo 13920  cdvds 16302  Basecbs 17258  0gc0g 17499  Mndcmnd 18772  .gcmg 19107  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-dvds 16303  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mulg 19108  df-od 19570
This theorem is referenced by:  mndodcongi  19585  oddvdsnn0  19586
  Copyright terms: Public domain W3C validator