MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcong Structured version   Visualization version   GIF version

Theorem mndodcong 18788
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcong (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcong
StepHypRef Expression
1 oveq1 7177 . . 3 ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
2 simp2l 1200 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℕ0)
32nn0zd 12166 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℤ)
4 simp3 1139 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
53, 4zmodcld 13351 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
65adantr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℕ0)
76nn0red 12037 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) ∈ ℝ)
8 simp2r 1201 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
98nn0zd 12166 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
109, 4zmodcld 13351 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1110adantr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1211nn0red 12037 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
13 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
14 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
15 odid.3 . . . . . 6 · = (.g𝐺)
16 odid.4 . . . . . 6 0 = (0g𝐺)
17 simp1l 1198 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
1817adantr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐺 ∈ Mnd)
19 simp1r 1199 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
2019adantr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → 𝐴𝑋)
214adantr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑂𝐴) ∈ ℕ)
222nn0red 12037 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑀 ∈ ℝ)
234nnrpd 12512 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
24 modlt 13339 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2522, 23, 24syl2anc 587 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
2625adantr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) < (𝑂𝐴))
278nn0red 12037 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
28 modlt 13339 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
2927, 23, 28syl2anc 587 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
3029adantr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
31 simpr 488 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
3213, 14, 15, 16, 18, 20, 21, 6, 11, 26, 30, 31mndodconglem 18787 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑀 mod (𝑂𝐴)) ≤ (𝑁 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3331eqcomd 2744 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = ((𝑀 mod (𝑂𝐴)) · 𝐴))
3413, 14, 15, 16, 18, 20, 21, 11, 6, 30, 26, 33mndodconglem 18787 . . . . . 6 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑁 mod (𝑂𝐴)) = (𝑀 mod (𝑂𝐴)))
3534eqcomd 2744 . . . . 5 (((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) ∧ (𝑁 mod (𝑂𝐴)) ≤ (𝑀 mod (𝑂𝐴))) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
367, 12, 32, 35lecasei 10824 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) ∧ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)))
3736ex 416 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) → (𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴))))
381, 37impbid2 229 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ ((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴)))
39 moddvds 15710 . . 3 (((𝑂𝐴) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
404, 3, 9, 39syl3anc 1372 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) = (𝑁 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑀𝑁)))
4113, 14, 15, 16odmodnn0 18786 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑀 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4217, 19, 2, 4, 41syl31anc 1374 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑀 mod (𝑂𝐴)) · 𝐴) = (𝑀 · 𝐴))
4313, 14, 15, 16odmodnn0 18786 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4417, 19, 8, 4, 43syl31anc 1374 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
4542, 44eqeq12d 2754 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑀 mod (𝑂𝐴)) · 𝐴) = ((𝑁 mod (𝑂𝐴)) · 𝐴) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
4638, 40, 453bitr3d 312 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114   class class class wbr 5030  cfv 6339  (class class class)co 7170  cr 10614   < clt 10753  cle 10754  cmin 10948  cn 11716  0cn0 11976  cz 12062  +crp 12472   mod cmo 13328  cdvds 15699  Basecbs 16586  0gc0g 16816  Mndcmnd 18027  .gcmg 18342  odcod 18770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fz 12982  df-fl 13253  df-mod 13329  df-seq 13461  df-dvds 15700  df-0g 16818  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-mulg 18343  df-od 18774
This theorem is referenced by:  mndodcongi  18789  oddvdsnn0  18790
  Copyright terms: Public domain W3C validator