MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplit Structured version   Visualization version   GIF version

Theorem ditgsplit 25762
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc 25738, there is no constraint on the ordering of the points 𝐴, 𝐵, 𝐶 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x (𝜑𝑋 ∈ ℝ)
ditgsplit.y (𝜑𝑌 ∈ ℝ)
ditgsplit.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgsplit.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgsplit.c (𝜑𝐶 ∈ (𝑋[,]𝑌))
ditgsplit.d ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
ditgsplit.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
ditgsplit (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgsplit
StepHypRef Expression
1 ditgsplit.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgsplit.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgsplit.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13372 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 232 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1142 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgsplit.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13372 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 232 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1142 . 2 (𝜑𝐵 ∈ ℝ)
137adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
14 ditgsplit.c . . . . . 6 (𝜑𝐶 ∈ (𝑋[,]𝑌))
15 elicc2 13372 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
162, 3, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
1714, 16mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌))
1817simp1d 1142 . . . 4 (𝜑𝐶 ∈ ℝ)
1918adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐶 ∈ ℝ)
2012ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐵 ∈ ℝ)
2118ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
22 ditgsplit.d . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
23 ditgsplit.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
24 biid 261 . . . . . 6 ((𝐴𝐵𝐵𝐶) ↔ (𝐴𝐵𝐵𝐶))
252, 3, 1, 8, 14, 22, 23, 24ditgsplitlem 25761 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
2625adantlr 715 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
27 biid 261 . . . . . . . 8 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶𝐶𝐵))
282, 3, 1, 14, 8, 22, 23, 27ditgsplitlem 25761 . . . . . . 7 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
2928oveq1d 7402 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
302, 3, 1, 14, 22, 23ditgcl 25759 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 ∈ ℂ)
312, 3, 14, 8, 22, 23ditgcl 25759 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐵]𝐷 d𝑥 ∈ ℂ)
322, 3, 8, 14, 22, 23ditgcl 25759 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 ∈ ℂ)
3330, 31, 32addassd 11196 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)))
342, 3, 14, 8, 22, 23ditgswap 25760 . . . . . . . . . . 11 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 = -⨜[𝐶𝐵]𝐷 d𝑥)
3534oveq2d 7403 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥))
3631negidd 11523 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥) = 0)
3735, 36eqtrd 2764 . . . . . . . . 9 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = 0)
3837oveq2d 7403 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)) = (⨜[𝐴𝐶]𝐷 d𝑥 + 0))
3930addridd 11374 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + 0) = ⨜[𝐴𝐶]𝐷 d𝑥)
4033, 38, 393eqtrd 2768 . . . . . . 7 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4140ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4229, 41eqtr2d 2765 . . . . 5 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4342adantllr 719 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4420, 21, 26, 43lecasei 11280 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4540ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
46 ancom 460 . . . . . . . 8 ((𝐴𝐵𝐶𝐴) ↔ (𝐶𝐴𝐴𝐵))
472, 3, 14, 1, 8, 22, 23, 46ditgsplitlem 25761 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
4847oveq2d 7403 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
492, 3, 1, 14, 22, 23ditgswap 25760 . . . . . . . . . . 11 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 = -⨜[𝐴𝐶]𝐷 d𝑥)
5049oveq2d 7403 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥))
5130negidd 11523 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥) = 0)
5250, 51eqtrd 2764 . . . . . . . . 9 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = 0)
5352oveq1d 7402 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (0 + ⨜[𝐴𝐵]𝐷 d𝑥))
542, 3, 14, 1, 22, 23ditgcl 25759 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 ∈ ℂ)
552, 3, 1, 8, 22, 23ditgcl 25759 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 ∈ ℂ)
5630, 54, 55addassd 11196 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
5755addlidd 11375 . . . . . . . 8 (𝜑 → (0 + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
5853, 56, 573eqtr3d 2772 . . . . . . 7 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
5958ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
6048, 59eqtrd 2764 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
6160oveq1d 7402 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6245, 61eqtr3d 2766 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6313, 19, 44, 62lecasei 11280 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
647adantr 480 . . 3 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
6518adantr 480 . . 3 ((𝜑𝐵𝐴) → 𝐶 ∈ ℝ)
66 biid 261 . . . . . 6 ((𝐵𝐴𝐴𝐶) ↔ (𝐵𝐴𝐴𝐶))
672, 3, 8, 1, 14, 22, 23, 66ditgsplitlem 25761 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
6867oveq2d 7403 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
692, 3, 1, 8, 22, 23ditgswap 25760 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 = -⨜[𝐴𝐵]𝐷 d𝑥)
7069oveq2d 7403 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥))
7155negidd 11523 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥) = 0)
7270, 71eqtrd 2764 . . . . . . 7 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = 0)
7372oveq1d 7402 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (0 + ⨜[𝐴𝐶]𝐷 d𝑥))
742, 3, 8, 1, 22, 23ditgcl 25759 . . . . . . 7 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 ∈ ℂ)
7555, 74, 30addassd 11196 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
7630addlidd 11375 . . . . . 6 (𝜑 → (0 + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
7773, 75, 763eqtr3d 2772 . . . . 5 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7877ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7968, 78eqtr2d 2765 . . 3 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
8012ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐵 ∈ ℝ)
8118ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐶 ∈ ℝ)
82 ancom 460 . . . . . . . . . 10 ((𝐶𝐴𝐵𝐶) ↔ (𝐵𝐶𝐶𝐴))
832, 3, 8, 14, 1, 22, 23, 82ditgsplitlem 25761 . . . . . . . . 9 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐴]𝐷 d𝑥 = (⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥))
8483oveq1d 7402 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥))
8532, 54, 30addassd 11196 . . . . . . . . . 10 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
862, 3, 14, 1, 22, 23ditgswap 25760 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = -⨜[𝐶𝐴]𝐷 d𝑥)
8786oveq2d 7403 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥))
8854negidd 11523 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥) = 0)
8987, 88eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = 0)
9089oveq2d 7403 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = (⨜[𝐵𝐶]𝐷 d𝑥 + 0))
9132addridd 11374 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + 0) = ⨜[𝐵𝐶]𝐷 d𝑥)
9285, 90, 913eqtrd 2768 . . . . . . . . 9 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9392ad2antrr 726 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9484, 93eqtr2d 2765 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
9594oveq2d 7403 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
9677ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
9795, 96eqtr2d 2765 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
9897adantllr 719 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
99 ancom 460 . . . . . . . . . . . 12 ((𝐵𝐴𝐶𝐵) ↔ (𝐶𝐵𝐵𝐴))
1002, 3, 14, 8, 1, 22, 23, 99ditgsplitlem 25761 . . . . . . . . . . 11 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐴]𝐷 d𝑥 = (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥))
101100oveq1d 7402 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥))
10231, 74, 55addassd 11196 . . . . . . . . . . . 12 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
1032, 3, 8, 1, 22, 23ditgswap 25760 . . . . . . . . . . . . . . 15 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 = -⨜[𝐵𝐴]𝐷 d𝑥)
104103oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥))
10574negidd 11523 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥) = 0)
106104, 105eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = 0)
107106oveq2d 7403 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = (⨜[𝐶𝐵]𝐷 d𝑥 + 0))
10831addridd 11374 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + 0) = ⨜[𝐶𝐵]𝐷 d𝑥)
109102, 107, 1083eqtrd 2768 . . . . . . . . . . 11 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
110109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
111101, 110eqtr2d 2765 . . . . . . . . 9 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
112111oveq2d 7403 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
11358ad2antrr 726 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
114112, 113eqtr2d 2765 . . . . . . 7 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
115114oveq1d 7402 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
11640ad2antrr 726 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
117115, 116eqtr2d 2765 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
118117adantlr 715 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
11980, 81, 98, 118lecasei 11280 . . 3 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
12064, 65, 79, 119lecasei 11280 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
1217, 12, 63, 120lecasei 11280 1 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cmpt 5188  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  cle 11209  -cneg 11406  (,)cioo 13306  [,]cicc 13309  𝐿1cibl 25518  cdit 25747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-ditg 25748
This theorem is referenced by:  itgsubstlem  25955
  Copyright terms: Public domain W3C validator