MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplit Structured version   Visualization version   GIF version

Theorem ditgsplit 25911
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc 25887, there is no constraint on the ordering of the points 𝐴, 𝐵, 𝐶 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x (𝜑𝑋 ∈ ℝ)
ditgsplit.y (𝜑𝑌 ∈ ℝ)
ditgsplit.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgsplit.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgsplit.c (𝜑𝐶 ∈ (𝑋[,]𝑌))
ditgsplit.d ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
ditgsplit.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
ditgsplit (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgsplit
StepHypRef Expression
1 ditgsplit.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgsplit.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgsplit.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13449 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 232 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1141 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgsplit.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13449 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 232 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1141 . 2 (𝜑𝐵 ∈ ℝ)
137adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
14 ditgsplit.c . . . . . 6 (𝜑𝐶 ∈ (𝑋[,]𝑌))
15 elicc2 13449 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
162, 3, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
1714, 16mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌))
1817simp1d 1141 . . . 4 (𝜑𝐶 ∈ ℝ)
1918adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐶 ∈ ℝ)
2012ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐵 ∈ ℝ)
2118ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
22 ditgsplit.d . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
23 ditgsplit.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
24 biid 261 . . . . . 6 ((𝐴𝐵𝐵𝐶) ↔ (𝐴𝐵𝐵𝐶))
252, 3, 1, 8, 14, 22, 23, 24ditgsplitlem 25910 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
2625adantlr 715 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
27 biid 261 . . . . . . . 8 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶𝐶𝐵))
282, 3, 1, 14, 8, 22, 23, 27ditgsplitlem 25910 . . . . . . 7 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
2928oveq1d 7446 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
302, 3, 1, 14, 22, 23ditgcl 25908 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 ∈ ℂ)
312, 3, 14, 8, 22, 23ditgcl 25908 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐵]𝐷 d𝑥 ∈ ℂ)
322, 3, 8, 14, 22, 23ditgcl 25908 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 ∈ ℂ)
3330, 31, 32addassd 11281 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)))
342, 3, 14, 8, 22, 23ditgswap 25909 . . . . . . . . . . 11 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 = -⨜[𝐶𝐵]𝐷 d𝑥)
3534oveq2d 7447 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥))
3631negidd 11608 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥) = 0)
3735, 36eqtrd 2775 . . . . . . . . 9 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = 0)
3837oveq2d 7447 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)) = (⨜[𝐴𝐶]𝐷 d𝑥 + 0))
3930addridd 11459 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + 0) = ⨜[𝐴𝐶]𝐷 d𝑥)
4033, 38, 393eqtrd 2779 . . . . . . 7 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4140ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4229, 41eqtr2d 2776 . . . . 5 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4342adantllr 719 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4420, 21, 26, 43lecasei 11365 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4540ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
46 ancom 460 . . . . . . . 8 ((𝐴𝐵𝐶𝐴) ↔ (𝐶𝐴𝐴𝐵))
472, 3, 14, 1, 8, 22, 23, 46ditgsplitlem 25910 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
4847oveq2d 7447 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
492, 3, 1, 14, 22, 23ditgswap 25909 . . . . . . . . . . 11 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 = -⨜[𝐴𝐶]𝐷 d𝑥)
5049oveq2d 7447 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥))
5130negidd 11608 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥) = 0)
5250, 51eqtrd 2775 . . . . . . . . 9 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = 0)
5352oveq1d 7446 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (0 + ⨜[𝐴𝐵]𝐷 d𝑥))
542, 3, 14, 1, 22, 23ditgcl 25908 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 ∈ ℂ)
552, 3, 1, 8, 22, 23ditgcl 25908 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 ∈ ℂ)
5630, 54, 55addassd 11281 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
5755addlidd 11460 . . . . . . . 8 (𝜑 → (0 + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
5853, 56, 573eqtr3d 2783 . . . . . . 7 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
5958ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
6048, 59eqtrd 2775 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
6160oveq1d 7446 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6245, 61eqtr3d 2777 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6313, 19, 44, 62lecasei 11365 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
647adantr 480 . . 3 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
6518adantr 480 . . 3 ((𝜑𝐵𝐴) → 𝐶 ∈ ℝ)
66 biid 261 . . . . . 6 ((𝐵𝐴𝐴𝐶) ↔ (𝐵𝐴𝐴𝐶))
672, 3, 8, 1, 14, 22, 23, 66ditgsplitlem 25910 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
6867oveq2d 7447 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
692, 3, 1, 8, 22, 23ditgswap 25909 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 = -⨜[𝐴𝐵]𝐷 d𝑥)
7069oveq2d 7447 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥))
7155negidd 11608 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥) = 0)
7270, 71eqtrd 2775 . . . . . . 7 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = 0)
7372oveq1d 7446 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (0 + ⨜[𝐴𝐶]𝐷 d𝑥))
742, 3, 8, 1, 22, 23ditgcl 25908 . . . . . . 7 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 ∈ ℂ)
7555, 74, 30addassd 11281 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
7630addlidd 11460 . . . . . 6 (𝜑 → (0 + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
7773, 75, 763eqtr3d 2783 . . . . 5 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7877ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7968, 78eqtr2d 2776 . . 3 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
8012ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐵 ∈ ℝ)
8118ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐶 ∈ ℝ)
82 ancom 460 . . . . . . . . . 10 ((𝐶𝐴𝐵𝐶) ↔ (𝐵𝐶𝐶𝐴))
832, 3, 8, 14, 1, 22, 23, 82ditgsplitlem 25910 . . . . . . . . 9 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐴]𝐷 d𝑥 = (⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥))
8483oveq1d 7446 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥))
8532, 54, 30addassd 11281 . . . . . . . . . 10 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
862, 3, 14, 1, 22, 23ditgswap 25909 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = -⨜[𝐶𝐴]𝐷 d𝑥)
8786oveq2d 7447 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥))
8854negidd 11608 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥) = 0)
8987, 88eqtrd 2775 . . . . . . . . . . 11 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = 0)
9089oveq2d 7447 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = (⨜[𝐵𝐶]𝐷 d𝑥 + 0))
9132addridd 11459 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + 0) = ⨜[𝐵𝐶]𝐷 d𝑥)
9285, 90, 913eqtrd 2779 . . . . . . . . 9 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9392ad2antrr 726 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9484, 93eqtr2d 2776 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
9594oveq2d 7447 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
9677ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
9795, 96eqtr2d 2776 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
9897adantllr 719 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
99 ancom 460 . . . . . . . . . . . 12 ((𝐵𝐴𝐶𝐵) ↔ (𝐶𝐵𝐵𝐴))
1002, 3, 14, 8, 1, 22, 23, 99ditgsplitlem 25910 . . . . . . . . . . 11 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐴]𝐷 d𝑥 = (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥))
101100oveq1d 7446 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥))
10231, 74, 55addassd 11281 . . . . . . . . . . . 12 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
1032, 3, 8, 1, 22, 23ditgswap 25909 . . . . . . . . . . . . . . 15 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 = -⨜[𝐵𝐴]𝐷 d𝑥)
104103oveq2d 7447 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥))
10574negidd 11608 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥) = 0)
106104, 105eqtrd 2775 . . . . . . . . . . . . 13 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = 0)
107106oveq2d 7447 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = (⨜[𝐶𝐵]𝐷 d𝑥 + 0))
10831addridd 11459 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + 0) = ⨜[𝐶𝐵]𝐷 d𝑥)
109102, 107, 1083eqtrd 2779 . . . . . . . . . . 11 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
110109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
111101, 110eqtr2d 2776 . . . . . . . . 9 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
112111oveq2d 7447 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
11358ad2antrr 726 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
114112, 113eqtr2d 2776 . . . . . . 7 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
115114oveq1d 7446 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
11640ad2antrr 726 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
117115, 116eqtr2d 2776 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
118117adantlr 715 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
11980, 81, 98, 118lecasei 11365 . . 3 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
12064, 65, 79, 119lecasei 11365 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
1217, 12, 63, 120lecasei 11365 1 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cmpt 5231  (class class class)co 7431  cr 11152  0cc0 11153   + caddc 11156  cle 11294  -cneg 11491  (,)cioo 13384  [,]cicc 13387  𝐿1cibl 25666  cdit 25896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-symdif 4259  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719  df-ditg 25897
This theorem is referenced by:  itgsubstlem  26104
  Copyright terms: Public domain W3C validator