MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplit Structured version   Visualization version   GIF version

Theorem ditgsplit 25897
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc 25873, there is no constraint on the ordering of the points 𝐴, 𝐵, 𝐶 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x (𝜑𝑋 ∈ ℝ)
ditgsplit.y (𝜑𝑌 ∈ ℝ)
ditgsplit.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgsplit.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgsplit.c (𝜑𝐶 ∈ (𝑋[,]𝑌))
ditgsplit.d ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
ditgsplit.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
ditgsplit (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgsplit
StepHypRef Expression
1 ditgsplit.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgsplit.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgsplit.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13453 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 232 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1142 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgsplit.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13453 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 232 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1142 . 2 (𝜑𝐵 ∈ ℝ)
137adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
14 ditgsplit.c . . . . . 6 (𝜑𝐶 ∈ (𝑋[,]𝑌))
15 elicc2 13453 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
162, 3, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
1714, 16mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌))
1817simp1d 1142 . . . 4 (𝜑𝐶 ∈ ℝ)
1918adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐶 ∈ ℝ)
2012ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐵 ∈ ℝ)
2118ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
22 ditgsplit.d . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
23 ditgsplit.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
24 biid 261 . . . . . 6 ((𝐴𝐵𝐵𝐶) ↔ (𝐴𝐵𝐵𝐶))
252, 3, 1, 8, 14, 22, 23, 24ditgsplitlem 25896 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
2625adantlr 715 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
27 biid 261 . . . . . . . 8 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶𝐶𝐵))
282, 3, 1, 14, 8, 22, 23, 27ditgsplitlem 25896 . . . . . . 7 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
2928oveq1d 7447 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
302, 3, 1, 14, 22, 23ditgcl 25894 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 ∈ ℂ)
312, 3, 14, 8, 22, 23ditgcl 25894 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐵]𝐷 d𝑥 ∈ ℂ)
322, 3, 8, 14, 22, 23ditgcl 25894 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 ∈ ℂ)
3330, 31, 32addassd 11284 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)))
342, 3, 14, 8, 22, 23ditgswap 25895 . . . . . . . . . . 11 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 = -⨜[𝐶𝐵]𝐷 d𝑥)
3534oveq2d 7448 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥))
3631negidd 11611 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥) = 0)
3735, 36eqtrd 2776 . . . . . . . . 9 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = 0)
3837oveq2d 7448 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)) = (⨜[𝐴𝐶]𝐷 d𝑥 + 0))
3930addridd 11462 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + 0) = ⨜[𝐴𝐶]𝐷 d𝑥)
4033, 38, 393eqtrd 2780 . . . . . . 7 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4140ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4229, 41eqtr2d 2777 . . . . 5 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4342adantllr 719 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4420, 21, 26, 43lecasei 11368 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4540ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
46 ancom 460 . . . . . . . 8 ((𝐴𝐵𝐶𝐴) ↔ (𝐶𝐴𝐴𝐵))
472, 3, 14, 1, 8, 22, 23, 46ditgsplitlem 25896 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
4847oveq2d 7448 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
492, 3, 1, 14, 22, 23ditgswap 25895 . . . . . . . . . . 11 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 = -⨜[𝐴𝐶]𝐷 d𝑥)
5049oveq2d 7448 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥))
5130negidd 11611 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥) = 0)
5250, 51eqtrd 2776 . . . . . . . . 9 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = 0)
5352oveq1d 7447 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (0 + ⨜[𝐴𝐵]𝐷 d𝑥))
542, 3, 14, 1, 22, 23ditgcl 25894 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 ∈ ℂ)
552, 3, 1, 8, 22, 23ditgcl 25894 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 ∈ ℂ)
5630, 54, 55addassd 11284 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
5755addlidd 11463 . . . . . . . 8 (𝜑 → (0 + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
5853, 56, 573eqtr3d 2784 . . . . . . 7 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
5958ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
6048, 59eqtrd 2776 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
6160oveq1d 7447 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6245, 61eqtr3d 2778 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6313, 19, 44, 62lecasei 11368 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
647adantr 480 . . 3 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
6518adantr 480 . . 3 ((𝜑𝐵𝐴) → 𝐶 ∈ ℝ)
66 biid 261 . . . . . 6 ((𝐵𝐴𝐴𝐶) ↔ (𝐵𝐴𝐴𝐶))
672, 3, 8, 1, 14, 22, 23, 66ditgsplitlem 25896 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
6867oveq2d 7448 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
692, 3, 1, 8, 22, 23ditgswap 25895 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 = -⨜[𝐴𝐵]𝐷 d𝑥)
7069oveq2d 7448 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥))
7155negidd 11611 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥) = 0)
7270, 71eqtrd 2776 . . . . . . 7 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = 0)
7372oveq1d 7447 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (0 + ⨜[𝐴𝐶]𝐷 d𝑥))
742, 3, 8, 1, 22, 23ditgcl 25894 . . . . . . 7 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 ∈ ℂ)
7555, 74, 30addassd 11284 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
7630addlidd 11463 . . . . . 6 (𝜑 → (0 + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
7773, 75, 763eqtr3d 2784 . . . . 5 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7877ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7968, 78eqtr2d 2777 . . 3 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
8012ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐵 ∈ ℝ)
8118ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐶 ∈ ℝ)
82 ancom 460 . . . . . . . . . 10 ((𝐶𝐴𝐵𝐶) ↔ (𝐵𝐶𝐶𝐴))
832, 3, 8, 14, 1, 22, 23, 82ditgsplitlem 25896 . . . . . . . . 9 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐴]𝐷 d𝑥 = (⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥))
8483oveq1d 7447 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥))
8532, 54, 30addassd 11284 . . . . . . . . . 10 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
862, 3, 14, 1, 22, 23ditgswap 25895 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = -⨜[𝐶𝐴]𝐷 d𝑥)
8786oveq2d 7448 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥))
8854negidd 11611 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥) = 0)
8987, 88eqtrd 2776 . . . . . . . . . . 11 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = 0)
9089oveq2d 7448 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = (⨜[𝐵𝐶]𝐷 d𝑥 + 0))
9132addridd 11462 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + 0) = ⨜[𝐵𝐶]𝐷 d𝑥)
9285, 90, 913eqtrd 2780 . . . . . . . . 9 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9392ad2antrr 726 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9484, 93eqtr2d 2777 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
9594oveq2d 7448 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
9677ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
9795, 96eqtr2d 2777 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
9897adantllr 719 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
99 ancom 460 . . . . . . . . . . . 12 ((𝐵𝐴𝐶𝐵) ↔ (𝐶𝐵𝐵𝐴))
1002, 3, 14, 8, 1, 22, 23, 99ditgsplitlem 25896 . . . . . . . . . . 11 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐴]𝐷 d𝑥 = (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥))
101100oveq1d 7447 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥))
10231, 74, 55addassd 11284 . . . . . . . . . . . 12 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
1032, 3, 8, 1, 22, 23ditgswap 25895 . . . . . . . . . . . . . . 15 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 = -⨜[𝐵𝐴]𝐷 d𝑥)
104103oveq2d 7448 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥))
10574negidd 11611 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥) = 0)
106104, 105eqtrd 2776 . . . . . . . . . . . . 13 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = 0)
107106oveq2d 7448 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = (⨜[𝐶𝐵]𝐷 d𝑥 + 0))
10831addridd 11462 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + 0) = ⨜[𝐶𝐵]𝐷 d𝑥)
109102, 107, 1083eqtrd 2780 . . . . . . . . . . 11 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
110109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
111101, 110eqtr2d 2777 . . . . . . . . 9 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
112111oveq2d 7448 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
11358ad2antrr 726 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
114112, 113eqtr2d 2777 . . . . . . 7 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
115114oveq1d 7447 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
11640ad2antrr 726 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
117115, 116eqtr2d 2777 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
118117adantlr 715 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
11980, 81, 98, 118lecasei 11368 . . 3 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
12064, 65, 79, 119lecasei 11368 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
1217, 12, 63, 120lecasei 11368 1 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5142  cmpt 5224  (class class class)co 7432  cr 11155  0cc0 11156   + caddc 11159  cle 11297  -cneg 11494  (,)cioo 13388  [,]cicc 13391  𝐿1cibl 25653  cdit 25882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-symdif 4252  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-rest 17468  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-top 22901  df-topon 22918  df-bases 22954  df-cmp 23396  df-ovol 25500  df-vol 25501  df-mbf 25655  df-itg1 25656  df-itg2 25657  df-ibl 25658  df-itg 25659  df-0p 25706  df-ditg 25883
This theorem is referenced by:  itgsubstlem  26090
  Copyright terms: Public domain W3C validator