MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplit Structured version   Visualization version   GIF version

Theorem ditgsplit 24758
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc 24734, there is no constraint on the ordering of the points 𝐴, 𝐵, 𝐶 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x (𝜑𝑋 ∈ ℝ)
ditgsplit.y (𝜑𝑌 ∈ ℝ)
ditgsplit.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgsplit.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgsplit.c (𝜑𝐶 ∈ (𝑋[,]𝑌))
ditgsplit.d ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
ditgsplit.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
ditgsplit (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgsplit
StepHypRef Expression
1 ditgsplit.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgsplit.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgsplit.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 13000 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 587 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 235 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1144 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgsplit.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 13000 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 587 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 235 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1144 . 2 (𝜑𝐵 ∈ ℝ)
137adantr 484 . . 3 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
14 ditgsplit.c . . . . . 6 (𝜑𝐶 ∈ (𝑋[,]𝑌))
15 elicc2 13000 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
162, 3, 15syl2anc 587 . . . . . 6 (𝜑 → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
1714, 16mpbid 235 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌))
1817simp1d 1144 . . . 4 (𝜑𝐶 ∈ ℝ)
1918adantr 484 . . 3 ((𝜑𝐴𝐵) → 𝐶 ∈ ℝ)
2012ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐵 ∈ ℝ)
2118ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
22 ditgsplit.d . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
23 ditgsplit.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
24 biid 264 . . . . . 6 ((𝐴𝐵𝐵𝐶) ↔ (𝐴𝐵𝐵𝐶))
252, 3, 1, 8, 14, 22, 23, 24ditgsplitlem 24757 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
2625adantlr 715 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
27 biid 264 . . . . . . . 8 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶𝐶𝐵))
282, 3, 1, 14, 8, 22, 23, 27ditgsplitlem 24757 . . . . . . 7 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
2928oveq1d 7228 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
302, 3, 1, 14, 22, 23ditgcl 24755 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 ∈ ℂ)
312, 3, 14, 8, 22, 23ditgcl 24755 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐵]𝐷 d𝑥 ∈ ℂ)
322, 3, 8, 14, 22, 23ditgcl 24755 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 ∈ ℂ)
3330, 31, 32addassd 10855 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)))
342, 3, 14, 8, 22, 23ditgswap 24756 . . . . . . . . . . 11 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 = -⨜[𝐶𝐵]𝐷 d𝑥)
3534oveq2d 7229 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥))
3631negidd 11179 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥) = 0)
3735, 36eqtrd 2777 . . . . . . . . 9 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = 0)
3837oveq2d 7229 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)) = (⨜[𝐴𝐶]𝐷 d𝑥 + 0))
3930addid1d 11032 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + 0) = ⨜[𝐴𝐶]𝐷 d𝑥)
4033, 38, 393eqtrd 2781 . . . . . . 7 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4140ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4229, 41eqtr2d 2778 . . . . 5 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4342adantllr 719 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4420, 21, 26, 43lecasei 10938 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4540ad2antrr 726 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
46 ancom 464 . . . . . . . 8 ((𝐴𝐵𝐶𝐴) ↔ (𝐶𝐴𝐴𝐵))
472, 3, 14, 1, 8, 22, 23, 46ditgsplitlem 24757 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
4847oveq2d 7229 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
492, 3, 1, 14, 22, 23ditgswap 24756 . . . . . . . . . . 11 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 = -⨜[𝐴𝐶]𝐷 d𝑥)
5049oveq2d 7229 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥))
5130negidd 11179 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥) = 0)
5250, 51eqtrd 2777 . . . . . . . . 9 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = 0)
5352oveq1d 7228 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (0 + ⨜[𝐴𝐵]𝐷 d𝑥))
542, 3, 14, 1, 22, 23ditgcl 24755 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 ∈ ℂ)
552, 3, 1, 8, 22, 23ditgcl 24755 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 ∈ ℂ)
5630, 54, 55addassd 10855 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
5755addid2d 11033 . . . . . . . 8 (𝜑 → (0 + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
5853, 56, 573eqtr3d 2785 . . . . . . 7 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
5958ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
6048, 59eqtrd 2777 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
6160oveq1d 7228 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6245, 61eqtr3d 2779 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6313, 19, 44, 62lecasei 10938 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
647adantr 484 . . 3 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
6518adantr 484 . . 3 ((𝜑𝐵𝐴) → 𝐶 ∈ ℝ)
66 biid 264 . . . . . 6 ((𝐵𝐴𝐴𝐶) ↔ (𝐵𝐴𝐴𝐶))
672, 3, 8, 1, 14, 22, 23, 66ditgsplitlem 24757 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
6867oveq2d 7229 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
692, 3, 1, 8, 22, 23ditgswap 24756 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 = -⨜[𝐴𝐵]𝐷 d𝑥)
7069oveq2d 7229 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥))
7155negidd 11179 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥) = 0)
7270, 71eqtrd 2777 . . . . . . 7 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = 0)
7372oveq1d 7228 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (0 + ⨜[𝐴𝐶]𝐷 d𝑥))
742, 3, 8, 1, 22, 23ditgcl 24755 . . . . . . 7 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 ∈ ℂ)
7555, 74, 30addassd 10855 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
7630addid2d 11033 . . . . . 6 (𝜑 → (0 + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
7773, 75, 763eqtr3d 2785 . . . . 5 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7877ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7968, 78eqtr2d 2778 . . 3 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
8012ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐵 ∈ ℝ)
8118ad2antrr 726 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐶 ∈ ℝ)
82 ancom 464 . . . . . . . . . 10 ((𝐶𝐴𝐵𝐶) ↔ (𝐵𝐶𝐶𝐴))
832, 3, 8, 14, 1, 22, 23, 82ditgsplitlem 24757 . . . . . . . . 9 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐴]𝐷 d𝑥 = (⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥))
8483oveq1d 7228 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥))
8532, 54, 30addassd 10855 . . . . . . . . . 10 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
862, 3, 14, 1, 22, 23ditgswap 24756 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = -⨜[𝐶𝐴]𝐷 d𝑥)
8786oveq2d 7229 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥))
8854negidd 11179 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥) = 0)
8987, 88eqtrd 2777 . . . . . . . . . . 11 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = 0)
9089oveq2d 7229 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = (⨜[𝐵𝐶]𝐷 d𝑥 + 0))
9132addid1d 11032 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + 0) = ⨜[𝐵𝐶]𝐷 d𝑥)
9285, 90, 913eqtrd 2781 . . . . . . . . 9 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9392ad2antrr 726 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9484, 93eqtr2d 2778 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
9594oveq2d 7229 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
9677ad2antrr 726 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
9795, 96eqtr2d 2778 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
9897adantllr 719 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
99 ancom 464 . . . . . . . . . . . 12 ((𝐵𝐴𝐶𝐵) ↔ (𝐶𝐵𝐵𝐴))
1002, 3, 14, 8, 1, 22, 23, 99ditgsplitlem 24757 . . . . . . . . . . 11 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐴]𝐷 d𝑥 = (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥))
101100oveq1d 7228 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥))
10231, 74, 55addassd 10855 . . . . . . . . . . . 12 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
1032, 3, 8, 1, 22, 23ditgswap 24756 . . . . . . . . . . . . . . 15 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 = -⨜[𝐵𝐴]𝐷 d𝑥)
104103oveq2d 7229 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥))
10574negidd 11179 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥) = 0)
106104, 105eqtrd 2777 . . . . . . . . . . . . 13 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = 0)
107106oveq2d 7229 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = (⨜[𝐶𝐵]𝐷 d𝑥 + 0))
10831addid1d 11032 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + 0) = ⨜[𝐶𝐵]𝐷 d𝑥)
109102, 107, 1083eqtrd 2781 . . . . . . . . . . 11 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
110109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
111101, 110eqtr2d 2778 . . . . . . . . 9 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
112111oveq2d 7229 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
11358ad2antrr 726 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
114112, 113eqtr2d 2778 . . . . . . 7 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
115114oveq1d 7228 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
11640ad2antrr 726 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
117115, 116eqtr2d 2778 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
118117adantlr 715 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
11980, 81, 98, 118lecasei 10938 . . 3 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
12064, 65, 79, 119lecasei 10938 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
1217, 12, 63, 120lecasei 10938 1 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cmpt 5135  (class class class)co 7213  cr 10728  0cc0 10729   + caddc 10732  cle 10868  -cneg 11063  (,)cioo 12935  [,]cicc 12938  𝐿1cibl 24514  cdit 24743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-symdif 4157  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-rest 16927  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-bases 21843  df-cmp 22284  df-ovol 24361  df-vol 24362  df-mbf 24516  df-itg1 24517  df-itg2 24518  df-ibl 24519  df-itg 24520  df-0p 24567  df-ditg 24744
This theorem is referenced by:  itgsubstlem  24945
  Copyright terms: Public domain W3C validator