MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplit Structured version   Visualization version   GIF version

Theorem ditgsplit 24462
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc 24440, there is no constraint on the ordering of the points 𝐴, 𝐵, 𝐶 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x (𝜑𝑋 ∈ ℝ)
ditgsplit.y (𝜑𝑌 ∈ ℝ)
ditgsplit.a (𝜑𝐴 ∈ (𝑋[,]𝑌))
ditgsplit.b (𝜑𝐵 ∈ (𝑋[,]𝑌))
ditgsplit.c (𝜑𝐶 ∈ (𝑋[,]𝑌))
ditgsplit.d ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
ditgsplit.i (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
ditgsplit (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem ditgsplit
StepHypRef Expression
1 ditgsplit.a . . . 4 (𝜑𝐴 ∈ (𝑋[,]𝑌))
2 ditgsplit.x . . . . 5 (𝜑𝑋 ∈ ℝ)
3 ditgsplit.y . . . . 5 (𝜑𝑌 ∈ ℝ)
4 elicc2 12804 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
52, 3, 4syl2anc 586 . . . 4 (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌)))
61, 5mpbid 234 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌))
76simp1d 1138 . 2 (𝜑𝐴 ∈ ℝ)
8 ditgsplit.b . . . 4 (𝜑𝐵 ∈ (𝑋[,]𝑌))
9 elicc2 12804 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
102, 3, 9syl2anc 586 . . . 4 (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌)))
118, 10mpbid 234 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌))
1211simp1d 1138 . 2 (𝜑𝐵 ∈ ℝ)
137adantr 483 . . 3 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
14 ditgsplit.c . . . . . 6 (𝜑𝐶 ∈ (𝑋[,]𝑌))
15 elicc2 12804 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
162, 3, 15syl2anc 586 . . . . . 6 (𝜑 → (𝐶 ∈ (𝑋[,]𝑌) ↔ (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌)))
1714, 16mpbid 234 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 𝑋𝐶𝐶𝑌))
1817simp1d 1138 . . . 4 (𝜑𝐶 ∈ ℝ)
1918adantr 483 . . 3 ((𝜑𝐴𝐵) → 𝐶 ∈ ℝ)
2012ad2antrr 724 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐵 ∈ ℝ)
2118ad2antrr 724 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
22 ditgsplit.d . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)
23 ditgsplit.i . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)
24 biid 263 . . . . . 6 ((𝐴𝐵𝐵𝐶) ↔ (𝐴𝐵𝐵𝐶))
252, 3, 1, 8, 14, 22, 23, 24ditgsplitlem 24461 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
2625adantlr 713 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
27 biid 263 . . . . . . . 8 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶𝐶𝐵))
282, 3, 1, 14, 8, 22, 23, 27ditgsplitlem 24461 . . . . . . 7 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
2928oveq1d 7174 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
302, 3, 1, 14, 22, 23ditgcl 24459 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 ∈ ℂ)
312, 3, 14, 8, 22, 23ditgcl 24459 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐵]𝐷 d𝑥 ∈ ℂ)
322, 3, 8, 14, 22, 23ditgcl 24459 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 ∈ ℂ)
3330, 31, 32addassd 10666 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)))
342, 3, 14, 8, 22, 23ditgswap 24460 . . . . . . . . . . 11 (𝜑 → ⨜[𝐵𝐶]𝐷 d𝑥 = -⨜[𝐶𝐵]𝐷 d𝑥)
3534oveq2d 7175 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥))
3631negidd 10990 . . . . . . . . . 10 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + -⨜[𝐶𝐵]𝐷 d𝑥) = 0)
3735, 36eqtrd 2859 . . . . . . . . 9 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = 0)
3837oveq2d 7175 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥)) = (⨜[𝐴𝐶]𝐷 d𝑥 + 0))
3930addid1d 10843 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + 0) = ⨜[𝐴𝐶]𝐷 d𝑥)
4033, 38, 393eqtrd 2863 . . . . . . 7 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4140ad2antrr 724 . . . . . 6 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
4229, 41eqtr2d 2860 . . . . 5 (((𝜑𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4342adantllr 717 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝐴𝐶) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4420, 21, 26, 43lecasei 10749 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
4540ad2antrr 724 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
46 ancom 463 . . . . . . . 8 ((𝐴𝐵𝐶𝐴) ↔ (𝐶𝐴𝐴𝐵))
472, 3, 14, 1, 8, 22, 23, 46ditgsplitlem 24461 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
4847oveq2d 7175 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
492, 3, 1, 14, 22, 23ditgswap 24460 . . . . . . . . . . 11 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 = -⨜[𝐴𝐶]𝐷 d𝑥)
5049oveq2d 7175 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥))
5130negidd 10990 . . . . . . . . . 10 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + -⨜[𝐴𝐶]𝐷 d𝑥) = 0)
5250, 51eqtrd 2859 . . . . . . . . 9 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) = 0)
5352oveq1d 7174 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (0 + ⨜[𝐴𝐵]𝐷 d𝑥))
542, 3, 14, 1, 22, 23ditgcl 24459 . . . . . . . . 9 (𝜑 → ⨜[𝐶𝐴]𝐷 d𝑥 ∈ ℂ)
552, 3, 1, 8, 22, 23ditgcl 24459 . . . . . . . . 9 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 ∈ ℂ)
5630, 54, 55addassd 10666 . . . . . . . 8 (𝜑 → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
5755addid2d 10844 . . . . . . . 8 (𝜑 → (0 + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
5853, 56, 573eqtr3d 2867 . . . . . . 7 (𝜑 → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
5958ad2antrr 724 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
6048, 59eqtrd 2859 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = ⨜[𝐴𝐵]𝐷 d𝑥)
6160oveq1d 7174 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6245, 61eqtr3d 2861 . . 3 (((𝜑𝐴𝐵) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
6313, 19, 44, 62lecasei 10749 . 2 ((𝜑𝐴𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
647adantr 483 . . 3 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ)
6518adantr 483 . . 3 ((𝜑𝐵𝐴) → 𝐶 ∈ ℝ)
66 biid 263 . . . . . 6 ((𝐵𝐴𝐴𝐶) ↔ (𝐵𝐴𝐴𝐶))
672, 3, 8, 1, 14, 22, 23, 66ditgsplitlem 24461 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
6867oveq2d 7175 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
692, 3, 1, 8, 22, 23ditgswap 24460 . . . . . . . . 9 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 = -⨜[𝐴𝐵]𝐷 d𝑥)
7069oveq2d 7175 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥))
7155negidd 10990 . . . . . . . 8 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + -⨜[𝐴𝐵]𝐷 d𝑥) = 0)
7270, 71eqtrd 2859 . . . . . . 7 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) = 0)
7372oveq1d 7174 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (0 + ⨜[𝐴𝐶]𝐷 d𝑥))
742, 3, 8, 1, 22, 23ditgcl 24459 . . . . . . 7 (𝜑 → ⨜[𝐵𝐴]𝐷 d𝑥 ∈ ℂ)
7555, 74, 30addassd 10666 . . . . . 6 (𝜑 → ((⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
7630addid2d 10844 . . . . . 6 (𝜑 → (0 + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
7773, 75, 763eqtr3d 2867 . . . . 5 (𝜑 → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7877ad2antrr 724 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
7968, 78eqtr2d 2860 . . 3 (((𝜑𝐵𝐴) ∧ 𝐴𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
8012ad2antrr 724 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐵 ∈ ℝ)
8118ad2antrr 724 . . . 4 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → 𝐶 ∈ ℝ)
82 ancom 463 . . . . . . . . . 10 ((𝐶𝐴𝐵𝐶) ↔ (𝐵𝐶𝐶𝐴))
832, 3, 8, 14, 1, 22, 23, 82ditgsplitlem 24461 . . . . . . . . 9 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐴]𝐷 d𝑥 = (⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥))
8483oveq1d 7174 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥))
8532, 54, 30addassd 10666 . . . . . . . . . 10 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
862, 3, 14, 1, 22, 23ditgswap 24460 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = -⨜[𝐶𝐴]𝐷 d𝑥)
8786oveq2d 7175 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥))
8854negidd 10990 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + -⨜[𝐶𝐴]𝐷 d𝑥) = 0)
8987, 88eqtrd 2859 . . . . . . . . . . 11 (𝜑 → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥) = 0)
9089oveq2d 7175 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = (⨜[𝐵𝐶]𝐷 d𝑥 + 0))
9132addid1d 10843 . . . . . . . . . 10 (𝜑 → (⨜[𝐵𝐶]𝐷 d𝑥 + 0) = ⨜[𝐵𝐶]𝐷 d𝑥)
9285, 90, 913eqtrd 2863 . . . . . . . . 9 (𝜑 → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9392ad2antrr 724 . . . . . . . 8 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ((⨜[𝐵𝐶]𝐷 d𝑥 + ⨜[𝐶𝐴]𝐷 d𝑥) + ⨜[𝐴𝐶]𝐷 d𝑥) = ⨜[𝐵𝐶]𝐷 d𝑥)
9484, 93eqtr2d 2860 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐵𝐶]𝐷 d𝑥 = (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥))
9594oveq2d 7175 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)))
9677ad2antrr 724 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → (⨜[𝐴𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐶]𝐷 d𝑥)) = ⨜[𝐴𝐶]𝐷 d𝑥)
9795, 96eqtr2d 2860 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
9897adantllr 717 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐵𝐶) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
99 ancom 463 . . . . . . . . . . . 12 ((𝐵𝐴𝐶𝐵) ↔ (𝐶𝐵𝐵𝐴))
1002, 3, 14, 8, 1, 22, 23, 99ditgsplitlem 24461 . . . . . . . . . . 11 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐴]𝐷 d𝑥 = (⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥))
101100oveq1d 7174 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥))
10231, 74, 55addassd 10666 . . . . . . . . . . . 12 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
1032, 3, 8, 1, 22, 23ditgswap 24460 . . . . . . . . . . . . . . 15 (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 = -⨜[𝐵𝐴]𝐷 d𝑥)
104103oveq2d 7175 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥))
10574negidd 10990 . . . . . . . . . . . . . 14 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + -⨜[𝐵𝐴]𝐷 d𝑥) = 0)
106104, 105eqtrd 2859 . . . . . . . . . . . . 13 (𝜑 → (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥) = 0)
107106oveq2d 7175 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + (⨜[𝐵𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = (⨜[𝐶𝐵]𝐷 d𝑥 + 0))
10831addid1d 10843 . . . . . . . . . . . 12 (𝜑 → (⨜[𝐶𝐵]𝐷 d𝑥 + 0) = ⨜[𝐶𝐵]𝐷 d𝑥)
109102, 107, 1083eqtrd 2863 . . . . . . . . . . 11 (𝜑 → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
110109ad2antrr 724 . . . . . . . . . 10 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐶𝐵]𝐷 d𝑥 + ⨜[𝐵𝐴]𝐷 d𝑥) + ⨜[𝐴𝐵]𝐷 d𝑥) = ⨜[𝐶𝐵]𝐷 d𝑥)
111101, 110eqtr2d 2860 . . . . . . . . 9 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐶𝐵]𝐷 d𝑥 = (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥))
112111oveq2d 7175 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) = (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)))
11358ad2antrr 724 . . . . . . . 8 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐶]𝐷 d𝑥 + (⨜[𝐶𝐴]𝐷 d𝑥 + ⨜[𝐴𝐵]𝐷 d𝑥)) = ⨜[𝐴𝐵]𝐷 d𝑥)
114112, 113eqtr2d 2860 . . . . . . 7 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐵]𝐷 d𝑥 = (⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥))
115114oveq1d 7174 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥) = ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥))
11640ad2antrr 724 . . . . . 6 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ((⨜[𝐴𝐶]𝐷 d𝑥 + ⨜[𝐶𝐵]𝐷 d𝑥) + ⨜[𝐵𝐶]𝐷 d𝑥) = ⨜[𝐴𝐶]𝐷 d𝑥)
117115, 116eqtr2d 2860 . . . . 5 (((𝜑𝐵𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
118117adantlr 713 . . . 4 ((((𝜑𝐵𝐴) ∧ 𝐶𝐴) ∧ 𝐶𝐵) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
11980, 81, 98, 118lecasei 10749 . . 3 (((𝜑𝐵𝐴) ∧ 𝐶𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
12064, 65, 79, 119lecasei 10749 . 2 ((𝜑𝐵𝐴) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
1217, 12, 63, 120lecasei 10749 1 (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113   class class class wbr 5069  cmpt 5149  (class class class)co 7159  cr 10539  0cc0 10540   + caddc 10543  cle 10679  -cneg 10874  (,)cioo 12741  [,]cicc 12744  𝐿1cibl 24221  cdit 24447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-symdif 4222  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-cmp 21998  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-ditg 24448
This theorem is referenced by:  itgsubstlem  24648
  Copyright terms: Public domain W3C validator