![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atanlogadd | Structured version Visualization version GIF version |
Description: The rule √(𝑧𝑤) = (√𝑧)(√𝑤) is not always true on the complex numbers, but it is true when the arguments of 𝑧 and 𝑤 sum to within the interval (-π, π], so there are some cases such as this one with 𝑧 = 1 + i𝐴 and 𝑤 = 1 − i𝐴 which are true unconditionally. This result can also be stated as "√(1 + 𝑧) + √(1 − 𝑧) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015.) |
Ref | Expression |
---|---|
atanlogadd | ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10497 | . 2 ⊢ (𝐴 ∈ dom arctan → 0 ∈ ℝ) | |
2 | atandm2 25140 | . . . 4 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) | |
3 | 2 | simp1bi 1138 | . . 3 ⊢ (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ) |
4 | 3 | recld 14391 | . 2 ⊢ (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ) |
5 | atanlogaddlem 25176 | . 2 ⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | |
6 | ax-1cn 10448 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
7 | ax-icn 10449 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
8 | mulcl 10474 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
9 | 7, 3, 8 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ) |
10 | addcl 10472 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ) | |
11 | 6, 9, 10 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ) |
12 | 2 | simp3bi 1140 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0) |
13 | 11, 12 | logcld 24839 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ) |
14 | subcl 10738 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ) | |
15 | 6, 9, 14 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ) |
16 | 2 | simp2bi 1139 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0) |
17 | 15, 16 | logcld 24839 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ) |
18 | 13, 17 | addcomd 10695 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴))))) |
19 | mulneg2 10931 | . . . . . . . . . 10 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
20 | 7, 3, 19 | sylancr 587 | . . . . . . . . 9 ⊢ (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴)) |
21 | 20 | oveq2d 7039 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴))) |
22 | negsub 10788 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴))) | |
23 | 6, 9, 22 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴))) |
24 | 21, 23 | eqtrd 2833 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴))) |
25 | 24 | fveq2d 6549 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 + (i · -𝐴))) = (log‘(1 − (i · 𝐴)))) |
26 | 20 | oveq2d 7039 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 − -(i · 𝐴))) |
27 | subneg 10789 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴))) | |
28 | 6, 9, 27 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 − -(i · 𝐴)) = (1 + (i · 𝐴))) |
29 | 26, 28 | eqtrd 2833 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 + (i · 𝐴))) |
30 | 29 | fveq2d 6549 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 − (i · -𝐴))) = (log‘(1 + (i · 𝐴)))) |
31 | 25, 30 | oveq12d 7041 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴))))) |
32 | 18, 31 | eqtr4d 2836 | . . . 4 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴))))) |
33 | 32 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴))))) |
34 | atandmneg 25169 | . . . 4 ⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan) | |
35 | 4 | le0neg1d 11065 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → ((ℜ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐴))) |
36 | 35 | biimpa 477 | . . . . 5 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → 0 ≤ -(ℜ‘𝐴)) |
37 | 3 | renegd 14406 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
38 | 37 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
39 | 36, 38 | breqtrrd 4996 | . . . 4 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘-𝐴)) |
40 | atanlogaddlem 25176 | . . . 4 ⊢ ((-𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘-𝐴)) → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) ∈ ran log) | |
41 | 34, 39, 40 | syl2an2r 681 | . . 3 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) ∈ ran log) |
42 | 33, 41 | eqeltrd 2885 | . 2 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
43 | 1, 4, 5, 42 | lecasei 10599 | 1 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 class class class wbr 4968 dom cdm 5450 ran crn 5451 ‘cfv 6232 (class class class)co 7023 ℂcc 10388 0cc0 10390 1c1 10391 ici 10392 + caddc 10393 · cmul 10395 ≤ cle 10529 − cmin 10723 -cneg 10724 ℜcre 14294 logclog 24823 arctancatan 25127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 ax-mulf 10470 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-map 8265 df-pm 8266 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-fi 8728 df-sup 8759 df-inf 8760 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-q 12202 df-rp 12244 df-xneg 12361 df-xadd 12362 df-xmul 12363 df-ioo 12596 df-ioc 12597 df-ico 12598 df-icc 12599 df-fz 12747 df-fzo 12888 df-fl 13016 df-mod 13092 df-seq 13224 df-exp 13284 df-fac 13488 df-bc 13517 df-hash 13545 df-shft 14264 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-limsup 14666 df-clim 14683 df-rlim 14684 df-sum 14881 df-ef 15258 df-sin 15260 df-cos 15261 df-pi 15263 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-starv 16413 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-unif 16421 df-hom 16422 df-cco 16423 df-rest 16529 df-topn 16530 df-0g 16548 df-gsum 16549 df-topgen 16550 df-pt 16551 df-prds 16554 df-xrs 16608 df-qtop 16613 df-imas 16614 df-xps 16616 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-submnd 17779 df-mulg 17986 df-cntz 18192 df-cmn 18639 df-psmet 20223 df-xmet 20224 df-met 20225 df-bl 20226 df-mopn 20227 df-fbas 20228 df-fg 20229 df-cnfld 20232 df-top 21190 df-topon 21207 df-topsp 21229 df-bases 21242 df-cld 21315 df-ntr 21316 df-cls 21317 df-nei 21394 df-lp 21432 df-perf 21433 df-cn 21523 df-cnp 21524 df-haus 21611 df-tx 21858 df-hmeo 22051 df-fil 22142 df-fm 22234 df-flim 22235 df-flf 22236 df-xms 22617 df-ms 22618 df-tms 22619 df-cncf 23173 df-limc 24151 df-dv 24152 df-log 24825 df-atan 25130 |
This theorem is referenced by: efiatan2 25180 |
Copyright terms: Public domain | W3C validator |