Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > atanlogadd | Structured version Visualization version GIF version |
Description: The rule √(𝑧𝑤) = (√𝑧)(√𝑤) is not always true on the complex numbers, but it is true when the arguments of 𝑧 and 𝑤 sum to within the interval (-π, π], so there are some cases such as this one with 𝑧 = 1 + i𝐴 and 𝑤 = 1 − i𝐴 which are true unconditionally. This result can also be stated as "√(1 + 𝑧) + √(1 − 𝑧) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015.) |
Ref | Expression |
---|---|
atanlogadd | ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11024 | . 2 ⊢ (𝐴 ∈ dom arctan → 0 ∈ ℝ) | |
2 | atandm2 26072 | . . . 4 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) | |
3 | 2 | simp1bi 1145 | . . 3 ⊢ (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ) |
4 | 3 | recld 14950 | . 2 ⊢ (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ) |
5 | atanlogaddlem 26108 | . 2 ⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | |
6 | ax-1cn 10975 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
7 | ax-icn 10976 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
8 | mulcl 11001 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
9 | 7, 3, 8 | sylancr 588 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ) |
10 | addcl 10999 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ) | |
11 | 6, 9, 10 | sylancr 588 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ) |
12 | 2 | simp3bi 1147 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0) |
13 | 11, 12 | logcld 25771 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ) |
14 | subcl 11266 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ) | |
15 | 6, 9, 14 | sylancr 588 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ) |
16 | 2 | simp2bi 1146 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0) |
17 | 15, 16 | logcld 25771 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ) |
18 | 13, 17 | addcomd 11223 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴))))) |
19 | mulneg2 11458 | . . . . . . . . . 10 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
20 | 7, 3, 19 | sylancr 588 | . . . . . . . . 9 ⊢ (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴)) |
21 | 20 | oveq2d 7323 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴))) |
22 | negsub 11315 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴))) | |
23 | 6, 9, 22 | sylancr 588 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴))) |
24 | 21, 23 | eqtrd 2776 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴))) |
25 | 24 | fveq2d 6808 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 + (i · -𝐴))) = (log‘(1 − (i · 𝐴)))) |
26 | 20 | oveq2d 7323 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 − -(i · 𝐴))) |
27 | subneg 11316 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴))) | |
28 | 6, 9, 27 | sylancr 588 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 − -(i · 𝐴)) = (1 + (i · 𝐴))) |
29 | 26, 28 | eqtrd 2776 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 + (i · 𝐴))) |
30 | 29 | fveq2d 6808 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 − (i · -𝐴))) = (log‘(1 + (i · 𝐴)))) |
31 | 25, 30 | oveq12d 7325 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴))))) |
32 | 18, 31 | eqtr4d 2779 | . . . 4 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴))))) |
33 | 32 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴))))) |
34 | atandmneg 26101 | . . . 4 ⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan) | |
35 | 4 | le0neg1d 11592 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → ((ℜ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐴))) |
36 | 35 | biimpa 478 | . . . . 5 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → 0 ≤ -(ℜ‘𝐴)) |
37 | 3 | renegd 14965 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
38 | 37 | adantr 482 | . . . . 5 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
39 | 36, 38 | breqtrrd 5109 | . . . 4 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘-𝐴)) |
40 | atanlogaddlem 26108 | . . . 4 ⊢ ((-𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘-𝐴)) → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) ∈ ran log) | |
41 | 34, 39, 40 | syl2an2r 683 | . . 3 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) ∈ ran log) |
42 | 33, 41 | eqeltrd 2837 | . 2 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
43 | 1, 4, 5, 42 | lecasei 11127 | 1 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 dom cdm 5600 ran crn 5601 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 0cc0 10917 1c1 10918 ici 10919 + caddc 10920 · cmul 10922 ≤ cle 11056 − cmin 11251 -cneg 11252 ℜcre 14853 logclog 25755 arctancatan 26059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ioc 13130 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-fac 14034 df-bc 14063 df-hash 14091 df-shft 14823 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-limsup 15225 df-clim 15242 df-rlim 15243 df-sum 15443 df-ef 15822 df-sin 15824 df-cos 15825 df-pi 15827 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-fbas 20639 df-fg 20640 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-ntr 22216 df-cls 22217 df-nei 22294 df-lp 22332 df-perf 22333 df-cn 22423 df-cnp 22424 df-haus 22511 df-tx 22758 df-hmeo 22951 df-fil 23042 df-fm 23134 df-flim 23135 df-flf 23136 df-xms 23518 df-ms 23519 df-tms 23520 df-cncf 24086 df-limc 25075 df-dv 25076 df-log 25757 df-atan 26062 |
This theorem is referenced by: efiatan2 26112 |
Copyright terms: Public domain | W3C validator |