Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > atanlogadd | Structured version Visualization version GIF version |
Description: The rule √(𝑧𝑤) = (√𝑧)(√𝑤) is not always true on the complex numbers, but it is true when the arguments of 𝑧 and 𝑤 sum to within the interval (-π, π], so there are some cases such as this one with 𝑧 = 1 + i𝐴 and 𝑤 = 1 − i𝐴 which are true unconditionally. This result can also be stated as "√(1 + 𝑧) + √(1 − 𝑧) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015.) |
Ref | Expression |
---|---|
atanlogadd | ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10683 | . 2 ⊢ (𝐴 ∈ dom arctan → 0 ∈ ℝ) | |
2 | atandm2 25563 | . . . 4 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) | |
3 | 2 | simp1bi 1143 | . . 3 ⊢ (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ) |
4 | 3 | recld 14602 | . 2 ⊢ (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ) |
5 | atanlogaddlem 25599 | . 2 ⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | |
6 | ax-1cn 10634 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
7 | ax-icn 10635 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
8 | mulcl 10660 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
9 | 7, 3, 8 | sylancr 591 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ) |
10 | addcl 10658 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ) | |
11 | 6, 9, 10 | sylancr 591 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ) |
12 | 2 | simp3bi 1145 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0) |
13 | 11, 12 | logcld 25262 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ) |
14 | subcl 10924 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ) | |
15 | 6, 9, 14 | sylancr 591 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ) |
16 | 2 | simp2bi 1144 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0) |
17 | 15, 16 | logcld 25262 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ) |
18 | 13, 17 | addcomd 10881 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴))))) |
19 | mulneg2 11116 | . . . . . . . . . 10 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
20 | 7, 3, 19 | sylancr 591 | . . . . . . . . 9 ⊢ (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴)) |
21 | 20 | oveq2d 7167 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴))) |
22 | negsub 10973 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴))) | |
23 | 6, 9, 22 | sylancr 591 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴))) |
24 | 21, 23 | eqtrd 2794 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴))) |
25 | 24 | fveq2d 6663 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 + (i · -𝐴))) = (log‘(1 − (i · 𝐴)))) |
26 | 20 | oveq2d 7167 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 − -(i · 𝐴))) |
27 | subneg 10974 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴))) | |
28 | 6, 9, 27 | sylancr 591 | . . . . . . . 8 ⊢ (𝐴 ∈ dom arctan → (1 − -(i · 𝐴)) = (1 + (i · 𝐴))) |
29 | 26, 28 | eqtrd 2794 | . . . . . . 7 ⊢ (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 + (i · 𝐴))) |
30 | 29 | fveq2d 6663 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (log‘(1 − (i · -𝐴))) = (log‘(1 + (i · 𝐴)))) |
31 | 25, 30 | oveq12d 7169 | . . . . 5 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴))))) |
32 | 18, 31 | eqtr4d 2797 | . . . 4 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴))))) |
33 | 32 | adantr 485 | . . 3 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴))))) |
34 | atandmneg 25592 | . . . 4 ⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan) | |
35 | 4 | le0neg1d 11250 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → ((ℜ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐴))) |
36 | 35 | biimpa 481 | . . . . 5 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → 0 ≤ -(ℜ‘𝐴)) |
37 | 3 | renegd 14617 | . . . . . 6 ⊢ (𝐴 ∈ dom arctan → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
38 | 37 | adantr 485 | . . . . 5 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
39 | 36, 38 | breqtrrd 5061 | . . . 4 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘-𝐴)) |
40 | atanlogaddlem 25599 | . . . 4 ⊢ ((-𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘-𝐴)) → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) ∈ ran log) | |
41 | 34, 39, 40 | syl2an2r 685 | . . 3 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · -𝐴))) + (log‘(1 − (i · -𝐴)))) ∈ ran log) |
42 | 33, 41 | eqeltrd 2853 | . 2 ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
43 | 1, 4, 5, 42 | lecasei 10785 | 1 ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5033 dom cdm 5525 ran crn 5526 ‘cfv 6336 (class class class)co 7151 ℂcc 10574 0cc0 10576 1c1 10577 ici 10578 + caddc 10579 · cmul 10581 ≤ cle 10715 − cmin 10909 -cneg 10910 ℜcre 14505 logclog 25246 arctancatan 25550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9138 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 ax-addf 10655 ax-mulf 10656 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8868 df-fi 8909 df-sup 8940 df-inf 8941 df-oi 9008 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-dec 12139 df-uz 12284 df-q 12390 df-rp 12432 df-xneg 12549 df-xadd 12550 df-xmul 12551 df-ioo 12784 df-ioc 12785 df-ico 12786 df-icc 12787 df-fz 12941 df-fzo 13084 df-fl 13212 df-mod 13288 df-seq 13420 df-exp 13481 df-fac 13685 df-bc 13714 df-hash 13742 df-shft 14475 df-cj 14507 df-re 14508 df-im 14509 df-sqrt 14643 df-abs 14644 df-limsup 14877 df-clim 14894 df-rlim 14895 df-sum 15092 df-ef 15470 df-sin 15472 df-cos 15473 df-pi 15475 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-starv 16639 df-sca 16640 df-vsca 16641 df-ip 16642 df-tset 16643 df-ple 16644 df-ds 16646 df-unif 16647 df-hom 16648 df-cco 16649 df-rest 16755 df-topn 16756 df-0g 16774 df-gsum 16775 df-topgen 16776 df-pt 16777 df-prds 16780 df-xrs 16834 df-qtop 16839 df-imas 16840 df-xps 16842 df-mre 16916 df-mrc 16917 df-acs 16919 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-submnd 18024 df-mulg 18293 df-cntz 18515 df-cmn 18976 df-psmet 20159 df-xmet 20160 df-met 20161 df-bl 20162 df-mopn 20163 df-fbas 20164 df-fg 20165 df-cnfld 20168 df-top 21595 df-topon 21612 df-topsp 21634 df-bases 21647 df-cld 21720 df-ntr 21721 df-cls 21722 df-nei 21799 df-lp 21837 df-perf 21838 df-cn 21928 df-cnp 21929 df-haus 22016 df-tx 22263 df-hmeo 22456 df-fil 22547 df-fm 22639 df-flim 22640 df-flf 22641 df-xms 23023 df-ms 23024 df-tms 23025 df-cncf 23580 df-limc 24566 df-dv 24567 df-log 25248 df-atan 25553 |
This theorem is referenced by: efiatan2 25603 |
Copyright terms: Public domain | W3C validator |