MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3 Structured version   Visualization version   GIF version

Theorem asinlem3 26932
Description: The argument to the logarithm in df-asin 26926 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))

Proof of Theorem asinlem3
StepHypRef Expression
1 0red 11293 . 2 (𝐴 ∈ ℂ → 0 ∈ ℝ)
2 imcl 15160 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
3 ax-icn 11243 . . . . . . . . 9 i ∈ ℂ
4 negcl 11536 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
54adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -𝐴 ∈ ℂ)
6 mulcl 11268 . . . . . . . . 9 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
73, 5, 6sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · -𝐴) ∈ ℂ)
8 ax-1cn 11242 . . . . . . . . . 10 1 ∈ ℂ
95sqcld 14194 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (-𝐴↑2) ∈ ℂ)
10 subcl 11535 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
118, 9, 10sylancr 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (-𝐴↑2)) ∈ ℂ)
1211sqrtcld 15486 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
137, 12addcld 11309 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
14 asinlem 26929 . . . . . . . 8 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
155, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
1613, 15absrpcld 15497 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+)
17 2z 12675 . . . . . 6 2 ∈ ℤ
18 rpexpcl 14131 . . . . . 6 (((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
1916, 17, 18sylancl 585 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
2019rprecred 13110 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ)
2113cjcld 15245 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℂ)
2221recld 15243 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) ∈ ℝ)
2319rpreccld 13109 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ+)
2423rpge0d 13103 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
25 imneg 15182 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
2625adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) = -(ℑ‘𝐴))
272le0neg2d 11862 . . . . . . . 8 (𝐴 ∈ ℂ → (0 ≤ (ℑ‘𝐴) ↔ -(ℑ‘𝐴) ≤ 0))
2827biimpa 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ 0)
2926, 28eqbrtrd 5188 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) ≤ 0)
30 asinlem3a 26931 . . . . . 6 ((-𝐴 ∈ ℂ ∧ (ℑ‘-𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
315, 29, 30syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3213recjd 15253 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3331, 32breqtrrd 5194 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
3420, 22, 24, 33mulge0d 11867 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
35 recval 15371 . . . . . . 7 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
3613, 15, 35syl2anc 583 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
37 asinlem2 26930 . . . . . . . . 9 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3837adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3938eqcomd 2746 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
40 1cnd 11285 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 ∈ ℂ)
41 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
42 mulcl 11268 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
433, 41, 42sylancr 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · 𝐴) ∈ ℂ)
44 sqcl 14168 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
4544adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (𝐴↑2) ∈ ℂ)
46 subcl 11535 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
478, 45, 46sylancr 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (𝐴↑2)) ∈ ℂ)
4847sqrtcld 15486 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (𝐴↑2))) ∈ ℂ)
4943, 48addcld 11309 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
5040, 49, 13, 15divmul3d 12104 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ↔ 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5139, 50mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5219rpcnd 13101 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℂ)
5319rpne0d 13104 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ≠ 0)
5421, 52, 53divrec2d 12074 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5536, 51, 543eqtr3d 2788 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5655fveq2d 6924 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5720, 21remul2d 15276 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5856, 57eqtrd 2780 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5934, 58breqtrrd 5194 . 2 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
60 asinlem3a 26931 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
611, 2, 59, 60lecasei 11396 1 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  cz 12639  +crp 13057  cexp 14112  ccj 15145  cre 15146  cim 15147  csqrt 15282  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  asinneg  26947  asinbnd  26960  dvasin  37664
  Copyright terms: Public domain W3C validator