MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3 Structured version   Visualization version   GIF version

Theorem asinlem3 25926
Description: The argument to the logarithm in df-asin 25920 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))

Proof of Theorem asinlem3
StepHypRef Expression
1 0red 10909 . 2 (𝐴 ∈ ℂ → 0 ∈ ℝ)
2 imcl 14750 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
3 ax-icn 10861 . . . . . . . . 9 i ∈ ℂ
4 negcl 11151 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
54adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -𝐴 ∈ ℂ)
6 mulcl 10886 . . . . . . . . 9 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
73, 5, 6sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · -𝐴) ∈ ℂ)
8 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
95sqcld 13790 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (-𝐴↑2) ∈ ℂ)
10 subcl 11150 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
118, 9, 10sylancr 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (-𝐴↑2)) ∈ ℂ)
1211sqrtcld 15077 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
137, 12addcld 10925 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
14 asinlem 25923 . . . . . . . 8 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
155, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
1613, 15absrpcld 15088 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+)
17 2z 12282 . . . . . 6 2 ∈ ℤ
18 rpexpcl 13729 . . . . . 6 (((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
1916, 17, 18sylancl 585 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
2019rprecred 12712 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ)
2113cjcld 14835 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℂ)
2221recld 14833 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) ∈ ℝ)
2319rpreccld 12711 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ+)
2423rpge0d 12705 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
25 imneg 14772 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
2625adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) = -(ℑ‘𝐴))
272le0neg2d 11477 . . . . . . . 8 (𝐴 ∈ ℂ → (0 ≤ (ℑ‘𝐴) ↔ -(ℑ‘𝐴) ≤ 0))
2827biimpa 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ 0)
2926, 28eqbrtrd 5092 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) ≤ 0)
30 asinlem3a 25925 . . . . . 6 ((-𝐴 ∈ ℂ ∧ (ℑ‘-𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
315, 29, 30syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3213recjd 14843 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3331, 32breqtrrd 5098 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
3420, 22, 24, 33mulge0d 11482 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
35 recval 14962 . . . . . . 7 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
3613, 15, 35syl2anc 583 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
37 asinlem2 25924 . . . . . . . . 9 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3837adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3938eqcomd 2744 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
40 1cnd 10901 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 ∈ ℂ)
41 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
42 mulcl 10886 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
433, 41, 42sylancr 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · 𝐴) ∈ ℂ)
44 sqcl 13766 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
4544adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (𝐴↑2) ∈ ℂ)
46 subcl 11150 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
478, 45, 46sylancr 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (𝐴↑2)) ∈ ℂ)
4847sqrtcld 15077 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (𝐴↑2))) ∈ ℂ)
4943, 48addcld 10925 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
5040, 49, 13, 15divmul3d 11715 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ↔ 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5139, 50mpbird 256 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5219rpcnd 12703 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℂ)
5319rpne0d 12706 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ≠ 0)
5421, 52, 53divrec2d 11685 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5536, 51, 543eqtr3d 2786 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5655fveq2d 6760 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5720, 21remul2d 14866 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5856, 57eqtrd 2778 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5934, 58breqtrrd 5098 . 2 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
60 asinlem3a 25925 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
611, 2, 59, 60lecasei 11011 1 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  cz 12249  +crp 12659  cexp 13710  ccj 14735  cre 14736  cim 14737  csqrt 14872  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  asinneg  25941  asinbnd  25954  dvasin  35788
  Copyright terms: Public domain W3C validator