![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lediv12ad | Structured version Visualization version GIF version |
Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
lediv12ad.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
lediv12ad.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
lediv12ad.6 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
lediv12ad.7 | ⊢ (𝜑 → 𝐶 ≤ 𝐷) |
Ref | Expression |
---|---|
lediv12ad | ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmul1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmul1d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | jca 513 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
4 | lediv12ad.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
5 | lediv12ad.6 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
6 | 4, 5 | jca 513 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
7 | ltmul1d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
8 | 7 | rpred 13016 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
9 | lediv12ad.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
10 | 8, 9 | jca 513 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) |
11 | 7 | rpgt0d 13019 | . . 3 ⊢ (𝜑 → 0 < 𝐶) |
12 | lediv12ad.7 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐷) | |
13 | 11, 12 | jca 513 | . 2 ⊢ (𝜑 → (0 < 𝐶 ∧ 𝐶 ≤ 𝐷)) |
14 | lediv12a 12107 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) | |
15 | 3, 6, 10, 13, 14 | syl22anc 838 | 1 ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℝcr 11109 0cc0 11110 < clt 11248 ≤ cle 11249 / cdiv 11871 ℝ+crp 12974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-rp 12975 |
This theorem is referenced by: lgamgulmlem5 26537 chpo1ubb 26984 selbergb 27052 selberg2b 27055 dvdivbd 44639 |
Copyright terms: Public domain | W3C validator |