MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv12ad Structured version   Visualization version   GIF version

Theorem lediv12ad 12482
Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
lediv12ad.4 (𝜑𝐷 ∈ ℝ)
lediv12ad.5 (𝜑 → 0 ≤ 𝐴)
lediv12ad.6 (𝜑𝐴𝐵)
lediv12ad.7 (𝜑𝐶𝐷)
Assertion
Ref Expression
lediv12ad (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))

Proof of Theorem lediv12ad
StepHypRef Expression
1 ltmul1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ltmul1d.2 . . 3 (𝜑𝐵 ∈ ℝ)
31, 2jca 514 . 2 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
4 lediv12ad.5 . . 3 (𝜑 → 0 ≤ 𝐴)
5 lediv12ad.6 . . 3 (𝜑𝐴𝐵)
64, 5jca 514 . 2 (𝜑 → (0 ≤ 𝐴𝐴𝐵))
7 ltmul1d.3 . . . 4 (𝜑𝐶 ∈ ℝ+)
87rpred 12423 . . 3 (𝜑𝐶 ∈ ℝ)
9 lediv12ad.4 . . 3 (𝜑𝐷 ∈ ℝ)
108, 9jca 514 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
117rpgt0d 12426 . . 3 (𝜑 → 0 < 𝐶)
12 lediv12ad.7 . . 3 (𝜑𝐶𝐷)
1311, 12jca 514 . 2 (𝜑 → (0 < 𝐶𝐶𝐷))
14 lediv12a 11525 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
153, 6, 10, 13, 14syl22anc 836 1 (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2108   class class class wbr 5057  (class class class)co 7148  cr 10528  0cc0 10529   < clt 10667  cle 10668   / cdiv 11289  +crp 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-rp 12382
This theorem is referenced by:  lgamgulmlem5  25602  chpo1ubb  26049  selbergb  26117  selberg2b  26120  dvdivbd  42198
  Copyright terms: Public domain W3C validator