![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lediv12ad | Structured version Visualization version GIF version |
Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
lediv12ad.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
lediv12ad.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
lediv12ad.6 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
lediv12ad.7 | ⊢ (𝜑 → 𝐶 ≤ 𝐷) |
Ref | Expression |
---|---|
lediv12ad | ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmul1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmul1d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
4 | lediv12ad.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
5 | lediv12ad.6 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
6 | 4, 5 | jca 511 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
7 | ltmul1d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
8 | 7 | rpred 13022 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
9 | lediv12ad.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
10 | 8, 9 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) |
11 | 7 | rpgt0d 13025 | . . 3 ⊢ (𝜑 → 0 < 𝐶) |
12 | lediv12ad.7 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐷) | |
13 | 11, 12 | jca 511 | . 2 ⊢ (𝜑 → (0 < 𝐶 ∧ 𝐶 ≤ 𝐷)) |
14 | lediv12a 12111 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) | |
15 | 3, 6, 10, 13, 14 | syl22anc 836 | 1 ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 class class class wbr 5141 (class class class)co 7405 ℝcr 11111 0cc0 11112 < clt 11252 ≤ cle 11253 / cdiv 11875 ℝ+crp 12980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-rp 12981 |
This theorem is referenced by: lgamgulmlem5 26920 chpo1ubb 27369 selbergb 27437 selberg2b 27440 dvdivbd 45211 |
Copyright terms: Public domain | W3C validator |