| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lediv12ad | Structured version Visualization version GIF version | ||
| Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| lediv12ad.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| lediv12ad.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| lediv12ad.6 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| lediv12ad.7 | ⊢ (𝜑 → 𝐶 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| lediv12ad | ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltmul1d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 4 | lediv12ad.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 5 | lediv12ad.6 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 6 | 4, 5 | jca 511 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
| 7 | ltmul1d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 8 | 7 | rpred 13078 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 9 | lediv12ad.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 10 | 8, 9 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) |
| 11 | 7 | rpgt0d 13081 | . . 3 ⊢ (𝜑 → 0 < 𝐶) |
| 12 | lediv12ad.7 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐷) | |
| 13 | 11, 12 | jca 511 | . 2 ⊢ (𝜑 → (0 < 𝐶 ∧ 𝐶 ≤ 𝐷)) |
| 14 | lediv12a 12162 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) | |
| 15 | 3, 6, 10, 13, 14 | syl22anc 838 | 1 ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 0cc0 11156 < clt 11296 ≤ cle 11297 / cdiv 11921 ℝ+crp 13035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-rp 13036 |
| This theorem is referenced by: lgamgulmlem5 27077 chpo1ubb 27526 selbergb 27594 selberg2b 27597 dvdivbd 45943 |
| Copyright terms: Public domain | W3C validator |