Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5149 (class class class)co 7409
ℝcr 11109 ≤
cle 11249 / cdiv 11871
ℝ+crp 12974 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-rp 12975 |
This theorem is referenced by: aalioulem5
25849 aalioulem6
25850 cxp2lim
26481 cxploglim2
26483 fsumharmonic
26516 lgamgulmlem2
26534 lgamgulmlem5
26537 chpchtlim
26982 dchrmusum2
26997 dchrvmasumlem3
27002 dchrisum0fno1
27014 dchrisum0lem1
27019 dchrisum0lem2a
27020 mulogsumlem
27034 vmalogdivsum2
27041 2vmadivsumlem
27043 selberglem2
27049 selbergb
27052 selberg2b
27055 chpdifbndlem1
27056 logdivbnd
27059 selberg3lem1
27060 selberg4lem1
27063 pntrlog2bndlem1
27080 pntrlog2bndlem2
27081 pntrlog2bndlem3
27082 pntrlog2bndlem5
27084 pntrlog2bnd
27087 pntpbnd1a
27088 pntpbnd2
27090 pntibndlem2
27094 dya2icoseg
33276 sxbrsigalem2
33285 knoppndvlem14
35401 knoppndvlem17
35404 lcmineqlem23
40916 aks4d1p1p2
40935 hashnzfzclim
43081 oddfl
43987 lefldiveq
44002 sumnnodd
44346 wallispilem5
44785 dirkertrigeqlem3
44816 fourierdlem6
44829 fourierdlem7
44830 fourierdlem10
44833 fourierdlem30
44853 fourierdlem39
44862 fourierdlem47
44869 fourierdlem65
44887 fourierdlem79
44901 etransclem23
44973 flnn0div2ge
47219 dignn0flhalflem2
47302 |