MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv1dd Structured version   Visualization version   GIF version

Theorem lediv1dd 12759
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
lediv1dd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
lediv1dd (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))

Proof of Theorem lediv1dd
StepHypRef Expression
1 lediv1dd.4 . 2 (𝜑𝐴𝐵)
2 ltmul1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltmul1d.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
52, 3, 4lediv1d 12747 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
61, 5mpbid 231 1 (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  cle 10941   / cdiv 11562  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-rp 12660
This theorem is referenced by:  aalioulem5  25401  aalioulem6  25402  cxp2lim  26031  cxploglim2  26033  fsumharmonic  26066  lgamgulmlem2  26084  lgamgulmlem5  26087  chpchtlim  26532  dchrmusum2  26547  dchrvmasumlem3  26552  dchrisum0fno1  26564  dchrisum0lem1  26569  dchrisum0lem2a  26570  mulogsumlem  26584  vmalogdivsum2  26591  2vmadivsumlem  26593  selberglem2  26599  selbergb  26602  selberg2b  26605  chpdifbndlem1  26606  logdivbnd  26609  selberg3lem1  26610  selberg4lem1  26613  pntrlog2bndlem1  26630  pntrlog2bndlem2  26631  pntrlog2bndlem3  26632  pntrlog2bndlem5  26634  pntrlog2bnd  26637  pntpbnd1a  26638  pntpbnd2  26640  pntibndlem2  26644  dya2icoseg  32144  sxbrsigalem2  32153  knoppndvlem14  34632  knoppndvlem17  34635  lcmineqlem23  39987  aks4d1p1p2  40006  hashnzfzclim  41829  oddfl  42705  lefldiveq  42721  sumnnodd  43061  wallispilem5  43500  dirkertrigeqlem3  43531  fourierdlem6  43544  fourierdlem7  43545  fourierdlem10  43548  fourierdlem30  43568  fourierdlem39  43577  fourierdlem47  43584  fourierdlem65  43602  fourierdlem79  43616  etransclem23  43688  flnn0div2ge  45767  dignn0flhalflem2  45850
  Copyright terms: Public domain W3C validator