MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv1dd Structured version   Visualization version   GIF version

Theorem lediv1dd 13053
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
lediv1dd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
lediv1dd (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))

Proof of Theorem lediv1dd
StepHypRef Expression
1 lediv1dd.4 . 2 (𝜑𝐴𝐵)
2 ltmul1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltmul1d.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
52, 3, 4lediv1d 13041 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
61, 5mpbid 232 1 (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  cle 11209   / cdiv 11835  +crp 12951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-rp 12952
This theorem is referenced by:  aalioulem5  26244  aalioulem6  26245  cxp2lim  26887  cxploglim2  26889  fsumharmonic  26922  lgamgulmlem2  26940  lgamgulmlem5  26943  chpchtlim  27390  dchrmusum2  27405  dchrvmasumlem3  27410  dchrisum0fno1  27422  dchrisum0lem1  27427  dchrisum0lem2a  27428  mulogsumlem  27442  vmalogdivsum2  27449  2vmadivsumlem  27451  selberglem2  27457  selbergb  27460  selberg2b  27463  chpdifbndlem1  27464  logdivbnd  27467  selberg3lem1  27468  selberg4lem1  27471  pntrlog2bndlem1  27488  pntrlog2bndlem2  27489  pntrlog2bndlem3  27490  pntrlog2bndlem5  27492  pntrlog2bnd  27495  pntpbnd1a  27496  pntpbnd2  27498  pntibndlem2  27502  dya2icoseg  34268  sxbrsigalem2  34277  knoppndvlem14  36513  knoppndvlem17  36516  lcmineqlem23  42039  aks4d1p1p2  42058  bcled  42166  hashnzfzclim  44311  oddfl  45276  lefldiveq  45290  sumnnodd  45628  wallispilem5  46067  dirkertrigeqlem3  46098  fourierdlem6  46111  fourierdlem7  46112  fourierdlem10  46115  fourierdlem30  46135  fourierdlem39  46144  fourierdlem47  46151  fourierdlem65  46169  fourierdlem79  46183  etransclem23  46255  flnn0div2ge  48519  dignn0flhalflem2  48602
  Copyright terms: Public domain W3C validator