Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lediv1dd | Structured version Visualization version GIF version |
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
lediv1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lediv1dd | ⊢ (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lediv1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | ltmul1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltmul1d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltmul1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
5 | 2, 3, 4 | lediv1d 12503 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))) |
6 | 1, 5 | mpbid 235 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)) |
Copyright terms: Public domain | W3C validator |