MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv1dd Structured version   Visualization version   GIF version

Theorem lediv1dd 12479
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
lediv1dd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
lediv1dd (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))

Proof of Theorem lediv1dd
StepHypRef Expression
1 lediv1dd.4 . 2 (𝜑𝐴𝐵)
2 ltmul1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltmul1d.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
52, 3, 4lediv1d 12467 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
61, 5mpbid 233 1 (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5063  (class class class)co 7148  cr 10525  cle 10665   / cdiv 11286  +crp 12379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-rp 12380
This theorem is referenced by:  aalioulem5  24840  aalioulem6  24841  cxp2lim  25468  cxploglim2  25470  fsumharmonic  25503  lgamgulmlem2  25521  lgamgulmlem5  25524  chpchtlim  25969  dchrmusum2  25984  dchrvmasumlem3  25989  dchrisum0fno1  26001  dchrisum0lem1  26006  dchrisum0lem2a  26007  mulogsumlem  26021  vmalogdivsum2  26028  2vmadivsumlem  26030  selberglem2  26036  selbergb  26039  selberg2b  26042  chpdifbndlem1  26043  logdivbnd  26046  selberg3lem1  26047  selberg4lem1  26050  pntrlog2bndlem1  26067  pntrlog2bndlem2  26068  pntrlog2bndlem3  26069  pntrlog2bndlem5  26071  pntrlog2bnd  26074  pntpbnd1a  26075  pntpbnd2  26077  pntibndlem2  26081  dya2icoseg  31421  sxbrsigalem2  31430  knoppndvlem14  33748  knoppndvlem17  33751  hashnzfzclim  40519  oddfl  41408  lefldiveq  41424  sumnnodd  41776  wallispilem5  42220  dirkertrigeqlem3  42251  fourierdlem6  42264  fourierdlem7  42265  fourierdlem10  42268  fourierdlem30  42288  fourierdlem39  42297  fourierdlem47  42304  fourierdlem65  42322  fourierdlem79  42336  etransclem23  42408  flnn0div2ge  44425  dignn0flhalflem2  44508
  Copyright terms: Public domain W3C validator