Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivbd Structured version   Visualization version   GIF version

Theorem dvdivbd 45938
Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivbd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivbd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvdivbd.adv (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
dvdivbd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvdivbd.b ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
dvdivbd.u (𝜑𝑈 ∈ ℝ)
dvdivbd.r (𝜑𝑅 ∈ ℝ)
dvdivbd.t (𝜑𝑇 ∈ ℝ)
dvdivbd.q (𝜑𝑄 ∈ ℝ)
dvdivbd.cbd ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
dvdivbd.bbd ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
dvdivbd.dbd ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
dvdivbd.abd ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
dvdivbd.bdv (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
dvdivbd.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvdivbd.e (𝜑𝐸 ∈ ℝ+)
dvdivbd.ele (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
dvdivbd.f 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
Assertion
Ref Expression
dvdivbd (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐸,𝑏,𝑥   𝐹,𝑏   𝑄,𝑏,𝑥   𝑅,𝑏,𝑥   𝑥,𝑆   𝑇,𝑏,𝑥   𝑈,𝑏,𝑥   𝑋,𝑏,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑥,𝑏)   𝐵(𝑥,𝑏)   𝐶(𝑥,𝑏)   𝐷(𝑥,𝑏)   𝑆(𝑏)   𝐹(𝑥)

Proof of Theorem dvdivbd
StepHypRef Expression
1 dvdivbd.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 dvdivbd.r . . . . 5 (𝜑𝑅 ∈ ℝ)
31, 2remulcld 11291 . . . 4 (𝜑 → (𝑈 · 𝑅) ∈ ℝ)
4 dvdivbd.t . . . . 5 (𝜑𝑇 ∈ ℝ)
5 dvdivbd.q . . . . 5 (𝜑𝑄 ∈ ℝ)
64, 5remulcld 11291 . . . 4 (𝜑 → (𝑇 · 𝑄) ∈ ℝ)
73, 6readdcld 11290 . . 3 (𝜑 → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
8 dvdivbd.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
98rpred 13077 . . . 4 (𝜑𝐸 ∈ ℝ)
109resqcld 14165 . . 3 (𝜑 → (𝐸↑2) ∈ ℝ)
118rpcnd 13079 . . . 4 (𝜑𝐸 ∈ ℂ)
128rpgt0d 13080 . . . . 5 (𝜑 → 0 < 𝐸)
1312gt0ne0d 11827 . . . 4 (𝜑𝐸 ≠ 0)
14 2z 12649 . . . . 5 2 ∈ ℤ
1514a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
1611, 13, 15expne0d 14192 . . 3 (𝜑 → (𝐸↑2) ≠ 0)
177, 10, 16redivcld 12095 . 2 (𝜑 → (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ)
18 dvdivbd.f . . . . . . 7 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
19 dvdivbd.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
20 dvdivbd.a . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
21 dvdivbd.c . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
22 dvdivbd.adv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
23 dvdivbd.b . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
24 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → 𝐵 = 0)
2524abs00bd 15330 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
26 0red 11264 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
279adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ)
2823abscld 15475 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (abs‘𝐵) ∈ ℝ)
2912adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 < 𝐸)
30 dvdivbd.ele . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
3130r19.21bi 3251 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ≤ (abs‘𝐵))
3226, 27, 28, 29, 31ltletrd 11421 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 0 < (abs‘𝐵))
3332gt0ne0d 11827 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (abs‘𝐵) ≠ 0)
3433adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) ≠ 0)
3534neneqd 2945 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → ¬ (abs‘𝐵) = 0)
3625, 35pm2.65da 817 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ¬ 𝐵 = 0)
3736neqned 2947 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
38 eldifsn 4786 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3923, 37, 38sylanbrc 583 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
40 dvdivbd.d . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
41 dvdivbd.bdv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
4219, 20, 21, 22, 39, 40, 41dvmptdiv 26012 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4318, 42eqtrid 2789 . . . . . 6 (𝜑𝐹 = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4421, 23mulcld 11281 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶 · 𝐵) ∈ ℂ)
4540, 20mulcld 11281 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
4644, 45subcld 11620 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶 · 𝐵) − (𝐷 · 𝐴)) ∈ ℂ)
4723sqcld 14184 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ∈ ℂ)
48 sqne0 14163 . . . . . . . . 9 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
4923, 48syl 17 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
5037, 49mpbird 257 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ≠ 0)
5146, 47, 50divcld 12043 . . . . . 6 ((𝜑𝑥𝑋) → (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)) ∈ ℂ)
5243, 51fvmpt2d 7029 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)))
5352fveq2d 6910 . . . 4 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) = (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
5446, 47, 50absdivd 15494 . . . . 5 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) = ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))))
5546abscld 15475 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ∈ ℝ)
567adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
578adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ+)
5814a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → 2 ∈ ℤ)
5957, 58rpexpcld 14286 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ∈ ℝ+)
6047abscld 15475 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) ∈ ℝ)
6146absge0d 15483 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))))
6244abscld 15475 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
6345abscld 15475 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ∈ ℝ)
6462, 63readdcld 11290 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ∈ ℝ)
6544, 45abs2dif2d 15497 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))))
663adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑈 · 𝑅) ∈ ℝ)
676adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑇 · 𝑄) ∈ ℝ)
6821, 23absmuld 15493 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
6921abscld 15475 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ∈ ℝ)
701adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑈 ∈ ℝ)
712adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑅 ∈ ℝ)
7221absge0d 15483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐶))
7323absge0d 15483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐵))
74 dvdivbd.cbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
75 dvdivbd.bbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
7669, 70, 28, 71, 72, 73, 74, 75lemul12ad 12210 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐶) · (abs‘𝐵)) ≤ (𝑈 · 𝑅))
7768, 76eqbrtrd 5165 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ≤ (𝑈 · 𝑅))
7840, 20absmuld 15493 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) = ((abs‘𝐷) · (abs‘𝐴)))
7940abscld 15475 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ∈ ℝ)
804adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑇 ∈ ℝ)
8120abscld 15475 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
825adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑄 ∈ ℝ)
8340absge0d 15483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐷))
8420absge0d 15483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐴))
85 dvdivbd.dbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
86 dvdivbd.abd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
8779, 80, 81, 82, 83, 84, 85, 86lemul12ad 12210 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐷) · (abs‘𝐴)) ≤ (𝑇 · 𝑄))
8878, 87eqbrtrd 5165 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ≤ (𝑇 · 𝑄))
8962, 63, 66, 67, 77, 88le2addd 11882 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
9055, 64, 56, 65, 89letrd 11418 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
91 2nn0 12543 . . . . . . . . 9 2 ∈ ℕ0
9291a1i 11 . . . . . . . 8 ((𝜑𝑥𝑋) → 2 ∈ ℕ0)
9326, 27, 29ltled 11409 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 ≤ 𝐸)
94 leexp1a 14215 . . . . . . . 8 (((𝐸 ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 𝐸𝐸 ≤ (abs‘𝐵))) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9527, 28, 92, 93, 31, 94syl32anc 1380 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9623, 92absexpd 15491 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2))
9795, 96breqtrrd 5171 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ (abs‘(𝐵↑2)))
9855, 56, 59, 60, 61, 90, 97lediv12ad 13136 . . . . 5 ((𝜑𝑥𝑋) → ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
9954, 98eqbrtrd 5165 . . . 4 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
10053, 99eqbrtrd 5165 . . 3 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
101100ralrimiva 3146 . 2 (𝜑 → ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
102 brralrspcev 5203 . 2 (((((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ ∧ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2))) → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
10317, 101, 102syl2anc 584 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  {csn 4626  {cpr 4628   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  0cn0 12526  cz 12613  +crp 13034  cexp 14102  abscabs 15273   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-t1 23322  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  fourierdlem68  46189
  Copyright terms: Public domain W3C validator