Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivbd Structured version   Visualization version   GIF version

Theorem dvdivbd 41066
 Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivbd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivbd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvdivbd.adv (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
dvdivbd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvdivbd.b ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
dvdivbd.u (𝜑𝑈 ∈ ℝ)
dvdivbd.r (𝜑𝑅 ∈ ℝ)
dvdivbd.t (𝜑𝑇 ∈ ℝ)
dvdivbd.q (𝜑𝑄 ∈ ℝ)
dvdivbd.cbd ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
dvdivbd.bbd ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
dvdivbd.dbd ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
dvdivbd.abd ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
dvdivbd.bdv (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
dvdivbd.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvdivbd.e (𝜑𝐸 ∈ ℝ+)
dvdivbd.ele (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
dvdivbd.f 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
Assertion
Ref Expression
dvdivbd (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐸,𝑏,𝑥   𝐹,𝑏   𝑄,𝑏,𝑥   𝑅,𝑏,𝑥   𝑥,𝑆   𝑇,𝑏,𝑥   𝑈,𝑏,𝑥   𝑋,𝑏,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑥,𝑏)   𝐵(𝑥,𝑏)   𝐶(𝑥,𝑏)   𝐷(𝑥,𝑏)   𝑆(𝑏)   𝐹(𝑥)

Proof of Theorem dvdivbd
StepHypRef Expression
1 dvdivbd.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 dvdivbd.r . . . . 5 (𝜑𝑅 ∈ ℝ)
31, 2remulcld 10407 . . . 4 (𝜑 → (𝑈 · 𝑅) ∈ ℝ)
4 dvdivbd.t . . . . 5 (𝜑𝑇 ∈ ℝ)
5 dvdivbd.q . . . . 5 (𝜑𝑄 ∈ ℝ)
64, 5remulcld 10407 . . . 4 (𝜑 → (𝑇 · 𝑄) ∈ ℝ)
73, 6readdcld 10406 . . 3 (𝜑 → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
8 dvdivbd.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
98rpred 12181 . . . 4 (𝜑𝐸 ∈ ℝ)
109resqcld 13356 . . 3 (𝜑 → (𝐸↑2) ∈ ℝ)
118rpcnd 12183 . . . 4 (𝜑𝐸 ∈ ℂ)
128rpgt0d 12184 . . . . 5 (𝜑 → 0 < 𝐸)
1312gt0ne0d 10939 . . . 4 (𝜑𝐸 ≠ 0)
14 2z 11761 . . . . 5 2 ∈ ℤ
1514a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
1611, 13, 15expne0d 13333 . . 3 (𝜑 → (𝐸↑2) ≠ 0)
177, 10, 16redivcld 11203 . 2 (𝜑 → (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ)
18 dvdivbd.f . . . . . . 7 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
19 dvdivbd.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
20 dvdivbd.a . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
21 dvdivbd.c . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
22 dvdivbd.adv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
23 dvdivbd.b . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
24 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → 𝐵 = 0)
2524abs00bd 14438 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
26 0red 10380 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
279adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ)
2823abscld 14583 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (abs‘𝐵) ∈ ℝ)
2912adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 < 𝐸)
30 dvdivbd.ele . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
3130r19.21bi 3114 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ≤ (abs‘𝐵))
3226, 27, 28, 29, 31ltletrd 10536 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 0 < (abs‘𝐵))
3332gt0ne0d 10939 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (abs‘𝐵) ≠ 0)
3433adantr 474 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) ≠ 0)
3534neneqd 2974 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → ¬ (abs‘𝐵) = 0)
3625, 35pm2.65da 807 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ¬ 𝐵 = 0)
3736neqned 2976 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
38 eldifsn 4550 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3923, 37, 38sylanbrc 578 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
40 dvdivbd.d . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
41 dvdivbd.bdv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
4219, 20, 21, 22, 39, 40, 41dvmptdiv 24174 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4318, 42syl5eq 2826 . . . . . 6 (𝜑𝐹 = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4421, 23mulcld 10397 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶 · 𝐵) ∈ ℂ)
4540, 20mulcld 10397 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
4644, 45subcld 10734 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶 · 𝐵) − (𝐷 · 𝐴)) ∈ ℂ)
4723sqcld 13325 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ∈ ℂ)
48 sqne0 13248 . . . . . . . . 9 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
4923, 48syl 17 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
5037, 49mpbird 249 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ≠ 0)
5146, 47, 50divcld 11151 . . . . . 6 ((𝜑𝑥𝑋) → (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)) ∈ ℂ)
5243, 51fvmpt2d 6554 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)))
5352fveq2d 6450 . . . 4 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) = (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
5446, 47, 50absdivd 14602 . . . . 5 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) = ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))))
5546abscld 14583 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ∈ ℝ)
567adantr 474 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
578adantr 474 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ+)
5814a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → 2 ∈ ℤ)
5957, 58rpexpcld 13353 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ∈ ℝ+)
6047abscld 14583 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) ∈ ℝ)
6146absge0d 14591 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))))
6244abscld 14583 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
6345abscld 14583 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ∈ ℝ)
6462, 63readdcld 10406 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ∈ ℝ)
6544, 45abs2dif2d 14605 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))))
663adantr 474 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑈 · 𝑅) ∈ ℝ)
676adantr 474 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑇 · 𝑄) ∈ ℝ)
6821, 23absmuld 14601 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
6921abscld 14583 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ∈ ℝ)
701adantr 474 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑈 ∈ ℝ)
712adantr 474 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑅 ∈ ℝ)
7221absge0d 14591 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐶))
7323absge0d 14591 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐵))
74 dvdivbd.cbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
75 dvdivbd.bbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
7669, 70, 28, 71, 72, 73, 74, 75lemul12ad 11320 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐶) · (abs‘𝐵)) ≤ (𝑈 · 𝑅))
7768, 76eqbrtrd 4908 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ≤ (𝑈 · 𝑅))
7840, 20absmuld 14601 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) = ((abs‘𝐷) · (abs‘𝐴)))
7940abscld 14583 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ∈ ℝ)
804adantr 474 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑇 ∈ ℝ)
8120abscld 14583 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
825adantr 474 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑄 ∈ ℝ)
8340absge0d 14591 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐷))
8420absge0d 14591 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐴))
85 dvdivbd.dbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
86 dvdivbd.abd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
8779, 80, 81, 82, 83, 84, 85, 86lemul12ad 11320 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐷) · (abs‘𝐴)) ≤ (𝑇 · 𝑄))
8878, 87eqbrtrd 4908 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ≤ (𝑇 · 𝑄))
8962, 63, 66, 67, 77, 88le2addd 10994 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
9055, 64, 56, 65, 89letrd 10533 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
91 2nn0 11661 . . . . . . . . 9 2 ∈ ℕ0
9291a1i 11 . . . . . . . 8 ((𝜑𝑥𝑋) → 2 ∈ ℕ0)
9326, 27, 29ltled 10524 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 ≤ 𝐸)
94 leexp1a 13237 . . . . . . . 8 (((𝐸 ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 𝐸𝐸 ≤ (abs‘𝐵))) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9527, 28, 92, 93, 31, 94syl32anc 1446 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9623, 92absexpd 14599 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2))
9795, 96breqtrrd 4914 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ (abs‘(𝐵↑2)))
9855, 56, 59, 60, 61, 90, 97lediv12ad 12240 . . . . 5 ((𝜑𝑥𝑋) → ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
9954, 98eqbrtrd 4908 . . . 4 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
10053, 99eqbrtrd 4908 . . 3 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
101100ralrimiva 3148 . 2 (𝜑 → ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
102 brralrspcev 4946 . 2 (((((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ ∧ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2))) → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
10317, 101, 102syl2anc 579 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ∀wral 3090  ∃wrex 3091   ∖ cdif 3789  {csn 4398  {cpr 4400   class class class wbr 4886   ↦ cmpt 4965  ‘cfv 6135  (class class class)co 6922  ℂcc 10270  ℝcr 10271  0cc0 10272   + caddc 10275   · cmul 10277   < clt 10411   ≤ cle 10412   − cmin 10606   / cdiv 11032  2c2 11430  ℕ0cn0 11642  ℤcz 11728  ℝ+crp 12137  ↑cexp 13178  abscabs 14381   D cdv 24064 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-t1 21526  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068 This theorem is referenced by:  fourierdlem68  41318
 Copyright terms: Public domain W3C validator