Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivbd Structured version   Visualization version   GIF version

Theorem dvdivbd 43464
Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivbd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivbd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvdivbd.adv (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
dvdivbd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvdivbd.b ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
dvdivbd.u (𝜑𝑈 ∈ ℝ)
dvdivbd.r (𝜑𝑅 ∈ ℝ)
dvdivbd.t (𝜑𝑇 ∈ ℝ)
dvdivbd.q (𝜑𝑄 ∈ ℝ)
dvdivbd.cbd ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
dvdivbd.bbd ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
dvdivbd.dbd ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
dvdivbd.abd ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
dvdivbd.bdv (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
dvdivbd.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvdivbd.e (𝜑𝐸 ∈ ℝ+)
dvdivbd.ele (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
dvdivbd.f 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
Assertion
Ref Expression
dvdivbd (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐸,𝑏,𝑥   𝐹,𝑏   𝑄,𝑏,𝑥   𝑅,𝑏,𝑥   𝑥,𝑆   𝑇,𝑏,𝑥   𝑈,𝑏,𝑥   𝑋,𝑏,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑥,𝑏)   𝐵(𝑥,𝑏)   𝐶(𝑥,𝑏)   𝐷(𝑥,𝑏)   𝑆(𝑏)   𝐹(𝑥)

Proof of Theorem dvdivbd
StepHypRef Expression
1 dvdivbd.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 dvdivbd.r . . . . 5 (𝜑𝑅 ∈ ℝ)
31, 2remulcld 11005 . . . 4 (𝜑 → (𝑈 · 𝑅) ∈ ℝ)
4 dvdivbd.t . . . . 5 (𝜑𝑇 ∈ ℝ)
5 dvdivbd.q . . . . 5 (𝜑𝑄 ∈ ℝ)
64, 5remulcld 11005 . . . 4 (𝜑 → (𝑇 · 𝑄) ∈ ℝ)
73, 6readdcld 11004 . . 3 (𝜑 → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
8 dvdivbd.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
98rpred 12772 . . . 4 (𝜑𝐸 ∈ ℝ)
109resqcld 13965 . . 3 (𝜑 → (𝐸↑2) ∈ ℝ)
118rpcnd 12774 . . . 4 (𝜑𝐸 ∈ ℂ)
128rpgt0d 12775 . . . . 5 (𝜑 → 0 < 𝐸)
1312gt0ne0d 11539 . . . 4 (𝜑𝐸 ≠ 0)
14 2z 12352 . . . . 5 2 ∈ ℤ
1514a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
1611, 13, 15expne0d 13870 . . 3 (𝜑 → (𝐸↑2) ≠ 0)
177, 10, 16redivcld 11803 . 2 (𝜑 → (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ)
18 dvdivbd.f . . . . . . 7 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
19 dvdivbd.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
20 dvdivbd.a . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
21 dvdivbd.c . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
22 dvdivbd.adv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
23 dvdivbd.b . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
24 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → 𝐵 = 0)
2524abs00bd 15003 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
26 0red 10978 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
279adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ)
2823abscld 15148 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (abs‘𝐵) ∈ ℝ)
2912adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 < 𝐸)
30 dvdivbd.ele . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
3130r19.21bi 3134 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ≤ (abs‘𝐵))
3226, 27, 28, 29, 31ltletrd 11135 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 0 < (abs‘𝐵))
3332gt0ne0d 11539 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (abs‘𝐵) ≠ 0)
3433adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) ≠ 0)
3534neneqd 2948 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → ¬ (abs‘𝐵) = 0)
3625, 35pm2.65da 814 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ¬ 𝐵 = 0)
3736neqned 2950 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
38 eldifsn 4720 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3923, 37, 38sylanbrc 583 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
40 dvdivbd.d . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
41 dvdivbd.bdv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
4219, 20, 21, 22, 39, 40, 41dvmptdiv 25138 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4318, 42eqtrid 2790 . . . . . 6 (𝜑𝐹 = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4421, 23mulcld 10995 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶 · 𝐵) ∈ ℂ)
4540, 20mulcld 10995 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
4644, 45subcld 11332 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶 · 𝐵) − (𝐷 · 𝐴)) ∈ ℂ)
4723sqcld 13862 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ∈ ℂ)
48 sqne0 13843 . . . . . . . . 9 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
4923, 48syl 17 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
5037, 49mpbird 256 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ≠ 0)
5146, 47, 50divcld 11751 . . . . . 6 ((𝜑𝑥𝑋) → (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)) ∈ ℂ)
5243, 51fvmpt2d 6888 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)))
5352fveq2d 6778 . . . 4 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) = (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
5446, 47, 50absdivd 15167 . . . . 5 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) = ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))))
5546abscld 15148 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ∈ ℝ)
567adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
578adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ+)
5814a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → 2 ∈ ℤ)
5957, 58rpexpcld 13962 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ∈ ℝ+)
6047abscld 15148 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) ∈ ℝ)
6146absge0d 15156 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))))
6244abscld 15148 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
6345abscld 15148 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ∈ ℝ)
6462, 63readdcld 11004 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ∈ ℝ)
6544, 45abs2dif2d 15170 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))))
663adantr 481 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑈 · 𝑅) ∈ ℝ)
676adantr 481 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑇 · 𝑄) ∈ ℝ)
6821, 23absmuld 15166 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
6921abscld 15148 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ∈ ℝ)
701adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑈 ∈ ℝ)
712adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑅 ∈ ℝ)
7221absge0d 15156 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐶))
7323absge0d 15156 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐵))
74 dvdivbd.cbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
75 dvdivbd.bbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
7669, 70, 28, 71, 72, 73, 74, 75lemul12ad 11917 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐶) · (abs‘𝐵)) ≤ (𝑈 · 𝑅))
7768, 76eqbrtrd 5096 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ≤ (𝑈 · 𝑅))
7840, 20absmuld 15166 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) = ((abs‘𝐷) · (abs‘𝐴)))
7940abscld 15148 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ∈ ℝ)
804adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑇 ∈ ℝ)
8120abscld 15148 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
825adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑄 ∈ ℝ)
8340absge0d 15156 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐷))
8420absge0d 15156 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐴))
85 dvdivbd.dbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
86 dvdivbd.abd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
8779, 80, 81, 82, 83, 84, 85, 86lemul12ad 11917 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐷) · (abs‘𝐴)) ≤ (𝑇 · 𝑄))
8878, 87eqbrtrd 5096 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ≤ (𝑇 · 𝑄))
8962, 63, 66, 67, 77, 88le2addd 11594 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
9055, 64, 56, 65, 89letrd 11132 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
91 2nn0 12250 . . . . . . . . 9 2 ∈ ℕ0
9291a1i 11 . . . . . . . 8 ((𝜑𝑥𝑋) → 2 ∈ ℕ0)
9326, 27, 29ltled 11123 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 ≤ 𝐸)
94 leexp1a 13893 . . . . . . . 8 (((𝐸 ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 𝐸𝐸 ≤ (abs‘𝐵))) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9527, 28, 92, 93, 31, 94syl32anc 1377 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9623, 92absexpd 15164 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2))
9795, 96breqtrrd 5102 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ (abs‘(𝐵↑2)))
9855, 56, 59, 60, 61, 90, 97lediv12ad 12831 . . . . 5 ((𝜑𝑥𝑋) → ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
9954, 98eqbrtrd 5096 . . . 4 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
10053, 99eqbrtrd 5096 . . 3 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
101100ralrimiva 3103 . 2 (𝜑 → ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
102 brralrspcev 5134 . 2 (((((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ ∧ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2))) → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
10317, 101, 102syl2anc 584 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  {csn 4561  {cpr 4563   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  0cn0 12233  cz 12319  +crp 12730  cexp 13782  abscabs 14945   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  fourierdlem68  43715
  Copyright terms: Public domain W3C validator