| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemc | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27532. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
| pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| Ref | Expression |
|---|---|
| pntlemc | ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
| 2 | pntlem1.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
| 3 | pntlem1.r | . . . . . 6 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 4 | pntlem1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 5 | pntlem1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 6 | pntlem1.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 7 | pntlem1.d | . . . . . 6 ⊢ 𝐷 = (𝐴 + 1) | |
| 8 | pntlem1.f | . . . . . 6 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 9 | 3, 4, 5, 6, 7, 8 | pntlemd 27512 | . . . . 5 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| 10 | 9 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 11 | 2, 10 | rpdivcld 13019 | . . 3 ⊢ (𝜑 → (𝑈 / 𝐷) ∈ ℝ+) |
| 12 | 1, 11 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| 13 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
| 14 | 5, 12 | rpdivcld 13019 | . . . . 5 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ+) |
| 15 | 14 | rpred 13002 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ) |
| 16 | 15 | rpefcld 16080 | . . 3 ⊢ (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+) |
| 17 | 13, 16 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
| 18 | 12 | rpred 13002 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 19 | 12 | rpgt0d 13005 | . . . 4 ⊢ (𝜑 → 0 < 𝐸) |
| 20 | 2 | rpred 13002 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 21 | 4 | rpred 13002 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 22 | 10 | rpred 13002 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 23 | pntlem1.u2 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
| 24 | 21 | ltp1d 12120 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| 25 | 24, 7 | breqtrrdi 5152 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐷) |
| 26 | 20, 21, 22, 23, 25 | lelttrd 11339 | . . . . . . 7 ⊢ (𝜑 → 𝑈 < 𝐷) |
| 27 | 10 | rpcnd 13004 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 28 | 27 | mulridd 11198 | . . . . . . 7 ⊢ (𝜑 → (𝐷 · 1) = 𝐷) |
| 29 | 26, 28 | breqtrrd 5138 | . . . . . 6 ⊢ (𝜑 → 𝑈 < (𝐷 · 1)) |
| 30 | 1red 11182 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 31 | 20, 30, 10 | ltdivmuld 13053 | . . . . . 6 ⊢ (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1))) |
| 32 | 29, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 1) |
| 33 | 1, 32 | eqbrtrid 5145 | . . . 4 ⊢ (𝜑 → 𝐸 < 1) |
| 34 | 0xr 11228 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 35 | 1xr 11240 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 36 | elioo2 13354 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1))) | |
| 37 | 34, 35, 36 | mp2an 692 | . . . 4 ⊢ (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1)) |
| 38 | 18, 19, 33, 37 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
| 39 | efgt1 16091 | . . . . 5 ⊢ ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸))) | |
| 40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 1 < (exp‘(𝐵 / 𝐸))) |
| 41 | 40, 13 | breqtrrdi 5152 | . . 3 ⊢ (𝜑 → 1 < 𝐾) |
| 42 | 1re 11181 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 43 | ltaddrp 12997 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
| 44 | 42, 4, 43 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
| 45 | 2 | rpcnne0d 13011 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0)) |
| 46 | divid 11875 | . . . . . . . 8 ⊢ ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1) | |
| 47 | 45, 46 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 / 𝑈) = 1) |
| 48 | 4 | rpcnd 13004 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 49 | ax-1cn 11133 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 50 | addcom 11367 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 51 | 48, 49, 50 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
| 52 | 7, 51 | eqtrid 2777 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
| 53 | 44, 47, 52 | 3brtr4d 5142 | . . . . . 6 ⊢ (𝜑 → (𝑈 / 𝑈) < 𝐷) |
| 54 | 20, 2, 10, 53 | ltdiv23d 13069 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 𝑈) |
| 55 | 1, 54 | eqbrtrid 5145 | . . . 4 ⊢ (𝜑 → 𝐸 < 𝑈) |
| 56 | difrp 12998 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) | |
| 57 | 18, 20, 56 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) |
| 58 | 55, 57 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
| 59 | 38, 41, 58 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
| 60 | 12, 17, 59 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 2c2 12248 3c3 12249 ;cdc 12656 ℝ+crp 12958 (,)cioo 13313 ↑cexp 14033 expce 16034 ψcchp 27010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-ioo 13317 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 |
| This theorem is referenced by: pntlema 27514 pntlemb 27515 pntlemg 27516 pntlemh 27517 pntlemq 27519 pntlemr 27520 pntlemj 27521 pntlemi 27522 pntlemf 27523 pntlemo 27525 pntleme 27526 pntlemp 27528 |
| Copyright terms: Public domain | W3C validator |