![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntlemc | Structured version Visualization version GIF version |
Description: Lemma for pnt 27676. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
Ref | Expression |
---|---|
pntlemc | ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
2 | pntlem1.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
3 | pntlem1.r | . . . . . 6 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
4 | pntlem1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
5 | pntlem1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
6 | pntlem1.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
7 | pntlem1.d | . . . . . 6 ⊢ 𝐷 = (𝐴 + 1) | |
8 | pntlem1.f | . . . . . 6 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
9 | 3, 4, 5, 6, 7, 8 | pntlemd 27656 | . . . . 5 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
10 | 9 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
11 | 2, 10 | rpdivcld 13116 | . . 3 ⊢ (𝜑 → (𝑈 / 𝐷) ∈ ℝ+) |
12 | 1, 11 | eqeltrid 2848 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
13 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
14 | 5, 12 | rpdivcld 13116 | . . . . 5 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ+) |
15 | 14 | rpred 13099 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ) |
16 | 15 | rpefcld 16153 | . . 3 ⊢ (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+) |
17 | 13, 16 | eqeltrid 2848 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
18 | 12 | rpred 13099 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
19 | 12 | rpgt0d 13102 | . . . 4 ⊢ (𝜑 → 0 < 𝐸) |
20 | 2 | rpred 13099 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
21 | 4 | rpred 13099 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
22 | 10 | rpred 13099 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
23 | pntlem1.u2 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
24 | 21 | ltp1d 12225 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
25 | 24, 7 | breqtrrdi 5208 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐷) |
26 | 20, 21, 22, 23, 25 | lelttrd 11448 | . . . . . . 7 ⊢ (𝜑 → 𝑈 < 𝐷) |
27 | 10 | rpcnd 13101 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
28 | 27 | mulridd 11307 | . . . . . . 7 ⊢ (𝜑 → (𝐷 · 1) = 𝐷) |
29 | 26, 28 | breqtrrd 5194 | . . . . . 6 ⊢ (𝜑 → 𝑈 < (𝐷 · 1)) |
30 | 1red 11291 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
31 | 20, 30, 10 | ltdivmuld 13150 | . . . . . 6 ⊢ (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1))) |
32 | 29, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 1) |
33 | 1, 32 | eqbrtrid 5201 | . . . 4 ⊢ (𝜑 → 𝐸 < 1) |
34 | 0xr 11337 | . . . . 5 ⊢ 0 ∈ ℝ* | |
35 | 1xr 11349 | . . . . 5 ⊢ 1 ∈ ℝ* | |
36 | elioo2 13448 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1))) | |
37 | 34, 35, 36 | mp2an 691 | . . . 4 ⊢ (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1)) |
38 | 18, 19, 33, 37 | syl3anbrc 1343 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
39 | efgt1 16164 | . . . . 5 ⊢ ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸))) | |
40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 1 < (exp‘(𝐵 / 𝐸))) |
41 | 40, 13 | breqtrrdi 5208 | . . 3 ⊢ (𝜑 → 1 < 𝐾) |
42 | 1re 11290 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
43 | ltaddrp 13094 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
44 | 42, 4, 43 | sylancr 586 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
45 | 2 | rpcnne0d 13108 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0)) |
46 | divid 11980 | . . . . . . . 8 ⊢ ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1) | |
47 | 45, 46 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 / 𝑈) = 1) |
48 | 4 | rpcnd 13101 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
49 | ax-1cn 11242 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
50 | addcom 11476 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
51 | 48, 49, 50 | sylancl 585 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
52 | 7, 51 | eqtrid 2792 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
53 | 44, 47, 52 | 3brtr4d 5198 | . . . . . 6 ⊢ (𝜑 → (𝑈 / 𝑈) < 𝐷) |
54 | 20, 2, 10, 53 | ltdiv23d 13166 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 𝑈) |
55 | 1, 54 | eqbrtrid 5201 | . . . 4 ⊢ (𝜑 → 𝐸 < 𝑈) |
56 | difrp 13095 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) | |
57 | 18, 20, 56 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) |
58 | 55, 57 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
59 | 38, 41, 58 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
60 | 12, 17, 59 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 2c2 12348 3c3 12349 ;cdc 12758 ℝ+crp 13057 (,)cioo 13407 ↑cexp 14112 expce 16109 ψcchp 27154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-ioo 13411 df-ico 13413 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 |
This theorem is referenced by: pntlema 27658 pntlemb 27659 pntlemg 27660 pntlemh 27661 pntlemq 27663 pntlemr 27664 pntlemj 27665 pntlemi 27666 pntlemf 27667 pntlemo 27669 pntleme 27670 pntlemp 27672 |
Copyright terms: Public domain | W3C validator |