Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemc Structured version   Visualization version   GIF version

Theorem pntlemc 26186
 Description: Lemma for pnt 26205. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
Assertion
Ref Expression
pntlemc (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)

Proof of Theorem pntlemc
StepHypRef Expression
1 pntlem1.e . . 3 𝐸 = (𝑈 / 𝐷)
2 pntlem1.u . . . 4 (𝜑𝑈 ∈ ℝ+)
3 pntlem1.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
4 pntlem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
5 pntlem1.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
6 pntlem1.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
7 pntlem1.d . . . . . 6 𝐷 = (𝐴 + 1)
8 pntlem1.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
93, 4, 5, 6, 7, 8pntlemd 26185 . . . . 5 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp2d 1140 . . . 4 (𝜑𝐷 ∈ ℝ+)
112, 10rpdivcld 12438 . . 3 (𝜑 → (𝑈 / 𝐷) ∈ ℝ+)
121, 11eqeltrid 2894 . 2 (𝜑𝐸 ∈ ℝ+)
13 pntlem1.k . . 3 𝐾 = (exp‘(𝐵 / 𝐸))
145, 12rpdivcld 12438 . . . . 5 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
1514rpred 12421 . . . 4 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
1615rpefcld 15452 . . 3 (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+)
1713, 16eqeltrid 2894 . 2 (𝜑𝐾 ∈ ℝ+)
1812rpred 12421 . . . 4 (𝜑𝐸 ∈ ℝ)
1912rpgt0d 12424 . . . 4 (𝜑 → 0 < 𝐸)
202rpred 12421 . . . . . . . 8 (𝜑𝑈 ∈ ℝ)
214rpred 12421 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2210rpred 12421 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
23 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
2421ltp1d 11561 . . . . . . . . 9 (𝜑𝐴 < (𝐴 + 1))
2524, 7breqtrrdi 5072 . . . . . . . 8 (𝜑𝐴 < 𝐷)
2620, 21, 22, 23, 25lelttrd 10789 . . . . . . 7 (𝜑𝑈 < 𝐷)
2710rpcnd 12423 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
2827mulid1d 10649 . . . . . . 7 (𝜑 → (𝐷 · 1) = 𝐷)
2926, 28breqtrrd 5058 . . . . . 6 (𝜑𝑈 < (𝐷 · 1))
30 1red 10633 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3120, 30, 10ltdivmuld 12472 . . . . . 6 (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1)))
3229, 31mpbird 260 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 1)
331, 32eqbrtrid 5065 . . . 4 (𝜑𝐸 < 1)
34 0xr 10679 . . . . 5 0 ∈ ℝ*
35 1xr 10691 . . . . 5 1 ∈ ℝ*
36 elioo2 12769 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1)))
3734, 35, 36mp2an 691 . . . 4 (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1))
3818, 19, 33, 37syl3anbrc 1340 . . 3 (𝜑𝐸 ∈ (0(,)1))
39 efgt1 15463 . . . . 5 ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸)))
4014, 39syl 17 . . . 4 (𝜑 → 1 < (exp‘(𝐵 / 𝐸)))
4140, 13breqtrrdi 5072 . . 3 (𝜑 → 1 < 𝐾)
42 1re 10632 . . . . . . . 8 1 ∈ ℝ
43 ltaddrp 12416 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
4442, 4, 43sylancr 590 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
452rpcnne0d 12430 . . . . . . . 8 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
46 divid 11318 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1)
4745, 46syl 17 . . . . . . 7 (𝜑 → (𝑈 / 𝑈) = 1)
484rpcnd 12423 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
49 ax-1cn 10586 . . . . . . . . 9 1 ∈ ℂ
50 addcom 10817 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
5148, 49, 50sylancl 589 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
527, 51syl5eq 2845 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
5344, 47, 523brtr4d 5062 . . . . . 6 (𝜑 → (𝑈 / 𝑈) < 𝐷)
5420, 2, 10, 53ltdiv23d 12488 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 𝑈)
551, 54eqbrtrid 5065 . . . 4 (𝜑𝐸 < 𝑈)
56 difrp 12417 . . . . 5 ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5718, 20, 56syl2anc 587 . . . 4 (𝜑 → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5855, 57mpbid 235 . . 3 (𝜑 → (𝑈𝐸) ∈ ℝ+)
5938, 41, 583jca 1125 . 2 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
6012, 17, 593jca 1125 1 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5030   ↦ cmpt 5110  ‘cfv 6324  (class class class)co 7135  ℂcc 10526  ℝcr 10527  0cc0 10528  1c1 10529   + caddc 10531   · cmul 10533  ℝ*cxr 10665   < clt 10666   ≤ cle 10667   − cmin 10861   / cdiv 11288  2c2 11682  3c3 11683  ;cdc 12088  ℝ+crp 12379  (,)cioo 12728  ↑cexp 13427  expce 15409  ψcchp 25685 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-addf 10607  ax-mulf 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-rp 12380  df-ioo 12732  df-ico 12734  df-fz 12888  df-fzo 13031  df-fl 13159  df-seq 13367  df-exp 13428  df-fac 13632  df-bc 13661  df-hash 13689  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415 This theorem is referenced by:  pntlema  26187  pntlemb  26188  pntlemg  26189  pntlemh  26190  pntlemq  26192  pntlemr  26193  pntlemj  26194  pntlemi  26195  pntlemf  26196  pntlemo  26198  pntleme  26199  pntlemp  26201
 Copyright terms: Public domain W3C validator