MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemc Structured version   Visualization version   GIF version

Theorem pntlemc 27534
Description: Lemma for pnt 27553. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
Assertion
Ref Expression
pntlemc (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)

Proof of Theorem pntlemc
StepHypRef Expression
1 pntlem1.e . . 3 𝐸 = (𝑈 / 𝐷)
2 pntlem1.u . . . 4 (𝜑𝑈 ∈ ℝ+)
3 pntlem1.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
4 pntlem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
5 pntlem1.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
6 pntlem1.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
7 pntlem1.d . . . . . 6 𝐷 = (𝐴 + 1)
8 pntlem1.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
93, 4, 5, 6, 7, 8pntlemd 27533 . . . . 5 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp2d 1143 . . . 4 (𝜑𝐷 ∈ ℝ+)
112, 10rpdivcld 12953 . . 3 (𝜑 → (𝑈 / 𝐷) ∈ ℝ+)
121, 11eqeltrid 2837 . 2 (𝜑𝐸 ∈ ℝ+)
13 pntlem1.k . . 3 𝐾 = (exp‘(𝐵 / 𝐸))
145, 12rpdivcld 12953 . . . . 5 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
1514rpred 12936 . . . 4 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
1615rpefcld 16016 . . 3 (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+)
1713, 16eqeltrid 2837 . 2 (𝜑𝐾 ∈ ℝ+)
1812rpred 12936 . . . 4 (𝜑𝐸 ∈ ℝ)
1912rpgt0d 12939 . . . 4 (𝜑 → 0 < 𝐸)
202rpred 12936 . . . . . . . 8 (𝜑𝑈 ∈ ℝ)
214rpred 12936 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2210rpred 12936 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
23 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
2421ltp1d 12059 . . . . . . . . 9 (𝜑𝐴 < (𝐴 + 1))
2524, 7breqtrrdi 5135 . . . . . . . 8 (𝜑𝐴 < 𝐷)
2620, 21, 22, 23, 25lelttrd 11278 . . . . . . 7 (𝜑𝑈 < 𝐷)
2710rpcnd 12938 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
2827mulridd 11136 . . . . . . 7 (𝜑 → (𝐷 · 1) = 𝐷)
2926, 28breqtrrd 5121 . . . . . 6 (𝜑𝑈 < (𝐷 · 1))
30 1red 11120 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3120, 30, 10ltdivmuld 12987 . . . . . 6 (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1)))
3229, 31mpbird 257 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 1)
331, 32eqbrtrid 5128 . . . 4 (𝜑𝐸 < 1)
34 0xr 11166 . . . . 5 0 ∈ ℝ*
35 1xr 11178 . . . . 5 1 ∈ ℝ*
36 elioo2 13288 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1)))
3734, 35, 36mp2an 692 . . . 4 (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1))
3818, 19, 33, 37syl3anbrc 1344 . . 3 (𝜑𝐸 ∈ (0(,)1))
39 efgt1 16027 . . . . 5 ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸)))
4014, 39syl 17 . . . 4 (𝜑 → 1 < (exp‘(𝐵 / 𝐸)))
4140, 13breqtrrdi 5135 . . 3 (𝜑 → 1 < 𝐾)
42 1re 11119 . . . . . . . 8 1 ∈ ℝ
43 ltaddrp 12931 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
4442, 4, 43sylancr 587 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
452rpcnne0d 12945 . . . . . . . 8 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
46 divid 11814 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1)
4745, 46syl 17 . . . . . . 7 (𝜑 → (𝑈 / 𝑈) = 1)
484rpcnd 12938 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
49 ax-1cn 11071 . . . . . . . . 9 1 ∈ ℂ
50 addcom 11306 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
5148, 49, 50sylancl 586 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
527, 51eqtrid 2780 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
5344, 47, 523brtr4d 5125 . . . . . 6 (𝜑 → (𝑈 / 𝑈) < 𝐷)
5420, 2, 10, 53ltdiv23d 13003 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 𝑈)
551, 54eqbrtrid 5128 . . . 4 (𝜑𝐸 < 𝑈)
56 difrp 12932 . . . . 5 ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5718, 20, 56syl2anc 584 . . . 4 (𝜑 → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5855, 57mpbid 232 . . 3 (𝜑 → (𝑈𝐸) ∈ ℝ+)
5938, 41, 583jca 1128 . 2 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
6012, 17, 593jca 1128 1 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  *cxr 11152   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  2c2 12187  3c3 12188  cdc 12594  +crp 12892  (,)cioo 13247  cexp 13970  expce 15970  ψcchp 27031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-ioo 13251  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976
This theorem is referenced by:  pntlema  27535  pntlemb  27536  pntlemg  27537  pntlemh  27538  pntlemq  27540  pntlemr  27541  pntlemj  27542  pntlemi  27543  pntlemf  27544  pntlemo  27546  pntleme  27547  pntlemp  27549
  Copyright terms: Public domain W3C validator