| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemc | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27541. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
| pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| Ref | Expression |
|---|---|
| pntlemc | ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
| 2 | pntlem1.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
| 3 | pntlem1.r | . . . . . 6 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 4 | pntlem1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 5 | pntlem1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 6 | pntlem1.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 7 | pntlem1.d | . . . . . 6 ⊢ 𝐷 = (𝐴 + 1) | |
| 8 | pntlem1.f | . . . . . 6 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 9 | 3, 4, 5, 6, 7, 8 | pntlemd 27521 | . . . . 5 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| 10 | 9 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 11 | 2, 10 | rpdivcld 12972 | . . 3 ⊢ (𝜑 → (𝑈 / 𝐷) ∈ ℝ+) |
| 12 | 1, 11 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| 13 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
| 14 | 5, 12 | rpdivcld 12972 | . . . . 5 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ+) |
| 15 | 14 | rpred 12955 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ) |
| 16 | 15 | rpefcld 16032 | . . 3 ⊢ (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+) |
| 17 | 13, 16 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
| 18 | 12 | rpred 12955 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 19 | 12 | rpgt0d 12958 | . . . 4 ⊢ (𝜑 → 0 < 𝐸) |
| 20 | 2 | rpred 12955 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 21 | 4 | rpred 12955 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 22 | 10 | rpred 12955 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 23 | pntlem1.u2 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
| 24 | 21 | ltp1d 12073 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| 25 | 24, 7 | breqtrrdi 5137 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐷) |
| 26 | 20, 21, 22, 23, 25 | lelttrd 11292 | . . . . . . 7 ⊢ (𝜑 → 𝑈 < 𝐷) |
| 27 | 10 | rpcnd 12957 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 28 | 27 | mulridd 11151 | . . . . . . 7 ⊢ (𝜑 → (𝐷 · 1) = 𝐷) |
| 29 | 26, 28 | breqtrrd 5123 | . . . . . 6 ⊢ (𝜑 → 𝑈 < (𝐷 · 1)) |
| 30 | 1red 11135 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 31 | 20, 30, 10 | ltdivmuld 13006 | . . . . . 6 ⊢ (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1))) |
| 32 | 29, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 1) |
| 33 | 1, 32 | eqbrtrid 5130 | . . . 4 ⊢ (𝜑 → 𝐸 < 1) |
| 34 | 0xr 11181 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 35 | 1xr 11193 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 36 | elioo2 13307 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1))) | |
| 37 | 34, 35, 36 | mp2an 692 | . . . 4 ⊢ (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1)) |
| 38 | 18, 19, 33, 37 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
| 39 | efgt1 16043 | . . . . 5 ⊢ ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸))) | |
| 40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 1 < (exp‘(𝐵 / 𝐸))) |
| 41 | 40, 13 | breqtrrdi 5137 | . . 3 ⊢ (𝜑 → 1 < 𝐾) |
| 42 | 1re 11134 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 43 | ltaddrp 12950 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
| 44 | 42, 4, 43 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
| 45 | 2 | rpcnne0d 12964 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0)) |
| 46 | divid 11828 | . . . . . . . 8 ⊢ ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1) | |
| 47 | 45, 46 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 / 𝑈) = 1) |
| 48 | 4 | rpcnd 12957 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 49 | ax-1cn 11086 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 50 | addcom 11320 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 51 | 48, 49, 50 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
| 52 | 7, 51 | eqtrid 2776 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
| 53 | 44, 47, 52 | 3brtr4d 5127 | . . . . . 6 ⊢ (𝜑 → (𝑈 / 𝑈) < 𝐷) |
| 54 | 20, 2, 10, 53 | ltdiv23d 13022 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 𝑈) |
| 55 | 1, 54 | eqbrtrid 5130 | . . . 4 ⊢ (𝜑 → 𝐸 < 𝑈) |
| 56 | difrp 12951 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) | |
| 57 | 18, 20, 56 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) |
| 58 | 55, 57 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
| 59 | 38, 41, 58 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
| 60 | 12, 17, 59 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 − cmin 11365 / cdiv 11795 2c2 12201 3c3 12202 ;cdc 12609 ℝ+crp 12911 (,)cioo 13266 ↑cexp 13986 expce 15986 ψcchp 27019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-ioo 13270 df-ico 13272 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 |
| This theorem is referenced by: pntlema 27523 pntlemb 27524 pntlemg 27525 pntlemh 27526 pntlemq 27528 pntlemr 27529 pntlemj 27530 pntlemi 27531 pntlemf 27532 pntlemo 27534 pntleme 27535 pntlemp 27537 |
| Copyright terms: Public domain | W3C validator |