MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemc Structured version   Visualization version   GIF version

Theorem pntlemc 25853
Description: Lemma for pnt 25872. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
Assertion
Ref Expression
pntlemc (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)

Proof of Theorem pntlemc
StepHypRef Expression
1 pntlem1.e . . 3 𝐸 = (𝑈 / 𝐷)
2 pntlem1.u . . . 4 (𝜑𝑈 ∈ ℝ+)
3 pntlem1.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
4 pntlem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
5 pntlem1.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
6 pntlem1.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
7 pntlem1.d . . . . . 6 𝐷 = (𝐴 + 1)
8 pntlem1.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
93, 4, 5, 6, 7, 8pntlemd 25852 . . . . 5 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp2d 1136 . . . 4 (𝜑𝐷 ∈ ℝ+)
112, 10rpdivcld 12298 . . 3 (𝜑 → (𝑈 / 𝐷) ∈ ℝ+)
121, 11syl5eqel 2887 . 2 (𝜑𝐸 ∈ ℝ+)
13 pntlem1.k . . 3 𝐾 = (exp‘(𝐵 / 𝐸))
145, 12rpdivcld 12298 . . . . 5 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
1514rpred 12281 . . . 4 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
1615rpefcld 15291 . . 3 (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+)
1713, 16syl5eqel 2887 . 2 (𝜑𝐾 ∈ ℝ+)
1812rpred 12281 . . . 4 (𝜑𝐸 ∈ ℝ)
1912rpgt0d 12284 . . . 4 (𝜑 → 0 < 𝐸)
202rpred 12281 . . . . . . . 8 (𝜑𝑈 ∈ ℝ)
214rpred 12281 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2210rpred 12281 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
23 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
2421ltp1d 11418 . . . . . . . . 9 (𝜑𝐴 < (𝐴 + 1))
2524, 7syl6breqr 5004 . . . . . . . 8 (𝜑𝐴 < 𝐷)
2620, 21, 22, 23, 25lelttrd 10645 . . . . . . 7 (𝜑𝑈 < 𝐷)
2710rpcnd 12283 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
2827mulid1d 10504 . . . . . . 7 (𝜑 → (𝐷 · 1) = 𝐷)
2926, 28breqtrrd 4990 . . . . . 6 (𝜑𝑈 < (𝐷 · 1))
30 1red 10488 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3120, 30, 10ltdivmuld 12332 . . . . . 6 (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1)))
3229, 31mpbird 258 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 1)
331, 32eqbrtrid 4997 . . . 4 (𝜑𝐸 < 1)
34 0xr 10534 . . . . 5 0 ∈ ℝ*
35 1xr 10547 . . . . 5 1 ∈ ℝ*
36 elioo2 12629 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1)))
3734, 35, 36mp2an 688 . . . 4 (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1))
3818, 19, 33, 37syl3anbrc 1336 . . 3 (𝜑𝐸 ∈ (0(,)1))
39 efgt1 15302 . . . . 5 ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸)))
4014, 39syl 17 . . . 4 (𝜑 → 1 < (exp‘(𝐵 / 𝐸)))
4140, 13syl6breqr 5004 . . 3 (𝜑 → 1 < 𝐾)
42 1re 10487 . . . . . . . 8 1 ∈ ℝ
43 ltaddrp 12276 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
4442, 4, 43sylancr 587 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
452rpcnne0d 12290 . . . . . . . 8 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
46 divid 11175 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1)
4745, 46syl 17 . . . . . . 7 (𝜑 → (𝑈 / 𝑈) = 1)
484rpcnd 12283 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
49 ax-1cn 10441 . . . . . . . . 9 1 ∈ ℂ
50 addcom 10673 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
5148, 49, 50sylancl 586 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
527, 51syl5eq 2843 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
5344, 47, 523brtr4d 4994 . . . . . 6 (𝜑 → (𝑈 / 𝑈) < 𝐷)
5420, 2, 10, 53ltdiv23d 12348 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 𝑈)
551, 54eqbrtrid 4997 . . . 4 (𝜑𝐸 < 𝑈)
56 difrp 12277 . . . . 5 ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5718, 20, 56syl2anc 584 . . . 4 (𝜑 → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5855, 57mpbid 233 . . 3 (𝜑 → (𝑈𝐸) ∈ ℝ+)
5938, 41, 583jca 1121 . 2 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
6012, 17, 593jca 1121 1 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cmpt 5041  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388  *cxr 10520   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  2c2 11540  3c3 11541  cdc 11947  +crp 12239  (,)cioo 12588  cexp 13279  expce 15248  ψcchp 25352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-rp 12240  df-ioo 12592  df-ico 12594  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254
This theorem is referenced by:  pntlema  25854  pntlemb  25855  pntlemg  25856  pntlemh  25857  pntlemq  25859  pntlemr  25860  pntlemj  25861  pntlemi  25862  pntlemf  25863  pntlemo  25865  pntleme  25866  pntlemp  25868
  Copyright terms: Public domain W3C validator