| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemc | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27550. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
| pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| Ref | Expression |
|---|---|
| pntlemc | ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
| 2 | pntlem1.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
| 3 | pntlem1.r | . . . . . 6 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 4 | pntlem1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 5 | pntlem1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 6 | pntlem1.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 7 | pntlem1.d | . . . . . 6 ⊢ 𝐷 = (𝐴 + 1) | |
| 8 | pntlem1.f | . . . . . 6 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 9 | 3, 4, 5, 6, 7, 8 | pntlemd 27530 | . . . . 5 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| 10 | 9 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 11 | 2, 10 | rpdivcld 12948 | . . 3 ⊢ (𝜑 → (𝑈 / 𝐷) ∈ ℝ+) |
| 12 | 1, 11 | eqeltrid 2835 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| 13 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
| 14 | 5, 12 | rpdivcld 12948 | . . . . 5 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ+) |
| 15 | 14 | rpred 12931 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ) |
| 16 | 15 | rpefcld 16011 | . . 3 ⊢ (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+) |
| 17 | 13, 16 | eqeltrid 2835 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
| 18 | 12 | rpred 12931 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 19 | 12 | rpgt0d 12934 | . . . 4 ⊢ (𝜑 → 0 < 𝐸) |
| 20 | 2 | rpred 12931 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 21 | 4 | rpred 12931 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 22 | 10 | rpred 12931 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 23 | pntlem1.u2 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
| 24 | 21 | ltp1d 12049 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| 25 | 24, 7 | breqtrrdi 5133 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐷) |
| 26 | 20, 21, 22, 23, 25 | lelttrd 11268 | . . . . . . 7 ⊢ (𝜑 → 𝑈 < 𝐷) |
| 27 | 10 | rpcnd 12933 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 28 | 27 | mulridd 11126 | . . . . . . 7 ⊢ (𝜑 → (𝐷 · 1) = 𝐷) |
| 29 | 26, 28 | breqtrrd 5119 | . . . . . 6 ⊢ (𝜑 → 𝑈 < (𝐷 · 1)) |
| 30 | 1red 11110 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 31 | 20, 30, 10 | ltdivmuld 12982 | . . . . . 6 ⊢ (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1))) |
| 32 | 29, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 1) |
| 33 | 1, 32 | eqbrtrid 5126 | . . . 4 ⊢ (𝜑 → 𝐸 < 1) |
| 34 | 0xr 11156 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 35 | 1xr 11168 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 36 | elioo2 13283 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1))) | |
| 37 | 34, 35, 36 | mp2an 692 | . . . 4 ⊢ (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1)) |
| 38 | 18, 19, 33, 37 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
| 39 | efgt1 16022 | . . . . 5 ⊢ ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸))) | |
| 40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 1 < (exp‘(𝐵 / 𝐸))) |
| 41 | 40, 13 | breqtrrdi 5133 | . . 3 ⊢ (𝜑 → 1 < 𝐾) |
| 42 | 1re 11109 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 43 | ltaddrp 12926 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
| 44 | 42, 4, 43 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
| 45 | 2 | rpcnne0d 12940 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0)) |
| 46 | divid 11804 | . . . . . . . 8 ⊢ ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1) | |
| 47 | 45, 46 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 / 𝑈) = 1) |
| 48 | 4 | rpcnd 12933 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 49 | ax-1cn 11061 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 50 | addcom 11296 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 51 | 48, 49, 50 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
| 52 | 7, 51 | eqtrid 2778 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
| 53 | 44, 47, 52 | 3brtr4d 5123 | . . . . . 6 ⊢ (𝜑 → (𝑈 / 𝑈) < 𝐷) |
| 54 | 20, 2, 10, 53 | ltdiv23d 12998 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 𝑈) |
| 55 | 1, 54 | eqbrtrid 5126 | . . . 4 ⊢ (𝜑 → 𝐸 < 𝑈) |
| 56 | difrp 12927 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) | |
| 57 | 18, 20, 56 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) |
| 58 | 55, 57 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
| 59 | 38, 41, 58 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
| 60 | 12, 17, 59 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 − cmin 11341 / cdiv 11771 2c2 12177 3c3 12178 ;cdc 12585 ℝ+crp 12887 (,)cioo 13242 ↑cexp 13965 expce 15965 ψcchp 27028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-ioo 13246 df-ico 13248 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 |
| This theorem is referenced by: pntlema 27532 pntlemb 27533 pntlemg 27534 pntlemh 27535 pntlemq 27537 pntlemr 27538 pntlemj 27539 pntlemi 27540 pntlemf 27541 pntlemo 27543 pntleme 27544 pntlemp 27546 |
| Copyright terms: Public domain | W3C validator |