MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemc Structured version   Visualization version   GIF version

Theorem pntlemc 27653
Description: Lemma for pnt 27672. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
Assertion
Ref Expression
pntlemc (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)

Proof of Theorem pntlemc
StepHypRef Expression
1 pntlem1.e . . 3 𝐸 = (𝑈 / 𝐷)
2 pntlem1.u . . . 4 (𝜑𝑈 ∈ ℝ+)
3 pntlem1.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
4 pntlem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
5 pntlem1.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
6 pntlem1.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
7 pntlem1.d . . . . . 6 𝐷 = (𝐴 + 1)
8 pntlem1.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
93, 4, 5, 6, 7, 8pntlemd 27652 . . . . 5 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp2d 1142 . . . 4 (𝜑𝐷 ∈ ℝ+)
112, 10rpdivcld 13091 . . 3 (𝜑 → (𝑈 / 𝐷) ∈ ℝ+)
121, 11eqeltrid 2842 . 2 (𝜑𝐸 ∈ ℝ+)
13 pntlem1.k . . 3 𝐾 = (exp‘(𝐵 / 𝐸))
145, 12rpdivcld 13091 . . . . 5 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
1514rpred 13074 . . . 4 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
1615rpefcld 16137 . . 3 (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+)
1713, 16eqeltrid 2842 . 2 (𝜑𝐾 ∈ ℝ+)
1812rpred 13074 . . . 4 (𝜑𝐸 ∈ ℝ)
1912rpgt0d 13077 . . . 4 (𝜑 → 0 < 𝐸)
202rpred 13074 . . . . . . . 8 (𝜑𝑈 ∈ ℝ)
214rpred 13074 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2210rpred 13074 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
23 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
2421ltp1d 12195 . . . . . . . . 9 (𝜑𝐴 < (𝐴 + 1))
2524, 7breqtrrdi 5189 . . . . . . . 8 (𝜑𝐴 < 𝐷)
2620, 21, 22, 23, 25lelttrd 11416 . . . . . . 7 (𝜑𝑈 < 𝐷)
2710rpcnd 13076 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
2827mulridd 11275 . . . . . . 7 (𝜑 → (𝐷 · 1) = 𝐷)
2926, 28breqtrrd 5175 . . . . . 6 (𝜑𝑈 < (𝐷 · 1))
30 1red 11259 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3120, 30, 10ltdivmuld 13125 . . . . . 6 (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1)))
3229, 31mpbird 257 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 1)
331, 32eqbrtrid 5182 . . . 4 (𝜑𝐸 < 1)
34 0xr 11305 . . . . 5 0 ∈ ℝ*
35 1xr 11317 . . . . 5 1 ∈ ℝ*
36 elioo2 13424 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1)))
3734, 35, 36mp2an 692 . . . 4 (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1))
3818, 19, 33, 37syl3anbrc 1342 . . 3 (𝜑𝐸 ∈ (0(,)1))
39 efgt1 16148 . . . . 5 ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸)))
4014, 39syl 17 . . . 4 (𝜑 → 1 < (exp‘(𝐵 / 𝐸)))
4140, 13breqtrrdi 5189 . . 3 (𝜑 → 1 < 𝐾)
42 1re 11258 . . . . . . . 8 1 ∈ ℝ
43 ltaddrp 13069 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
4442, 4, 43sylancr 587 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
452rpcnne0d 13083 . . . . . . . 8 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
46 divid 11950 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1)
4745, 46syl 17 . . . . . . 7 (𝜑 → (𝑈 / 𝑈) = 1)
484rpcnd 13076 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
49 ax-1cn 11210 . . . . . . . . 9 1 ∈ ℂ
50 addcom 11444 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
5148, 49, 50sylancl 586 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
527, 51eqtrid 2786 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
5344, 47, 523brtr4d 5179 . . . . . 6 (𝜑 → (𝑈 / 𝑈) < 𝐷)
5420, 2, 10, 53ltdiv23d 13141 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 𝑈)
551, 54eqbrtrid 5182 . . . 4 (𝜑𝐸 < 𝑈)
56 difrp 13070 . . . . 5 ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5718, 20, 56syl2anc 584 . . . 4 (𝜑 → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5855, 57mpbid 232 . . 3 (𝜑 → (𝑈𝐸) ∈ ℝ+)
5938, 41, 583jca 1127 . 2 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
6012, 17, 593jca 1127 1 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  *cxr 11291   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  2c2 12318  3c3 12319  cdc 12730  +crp 13031  (,)cioo 13383  cexp 14098  expce 16093  ψcchp 27150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-ioo 13387  df-ico 13389  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099
This theorem is referenced by:  pntlema  27654  pntlemb  27655  pntlemg  27656  pntlemh  27657  pntlemq  27659  pntlemr  27660  pntlemj  27661  pntlemi  27662  pntlemf  27663  pntlemo  27665  pntleme  27666  pntlemp  27668
  Copyright terms: Public domain W3C validator