MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemc Structured version   Visualization version   GIF version

Theorem pntlemc 26741
Description: Lemma for pnt 26760. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
Assertion
Ref Expression
pntlemc (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)

Proof of Theorem pntlemc
StepHypRef Expression
1 pntlem1.e . . 3 𝐸 = (𝑈 / 𝐷)
2 pntlem1.u . . . 4 (𝜑𝑈 ∈ ℝ+)
3 pntlem1.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
4 pntlem1.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
5 pntlem1.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
6 pntlem1.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
7 pntlem1.d . . . . . 6 𝐷 = (𝐴 + 1)
8 pntlem1.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
93, 4, 5, 6, 7, 8pntlemd 26740 . . . . 5 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp2d 1142 . . . 4 (𝜑𝐷 ∈ ℝ+)
112, 10rpdivcld 12788 . . 3 (𝜑 → (𝑈 / 𝐷) ∈ ℝ+)
121, 11eqeltrid 2845 . 2 (𝜑𝐸 ∈ ℝ+)
13 pntlem1.k . . 3 𝐾 = (exp‘(𝐵 / 𝐸))
145, 12rpdivcld 12788 . . . . 5 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
1514rpred 12771 . . . 4 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
1615rpefcld 15812 . . 3 (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+)
1713, 16eqeltrid 2845 . 2 (𝜑𝐾 ∈ ℝ+)
1812rpred 12771 . . . 4 (𝜑𝐸 ∈ ℝ)
1912rpgt0d 12774 . . . 4 (𝜑 → 0 < 𝐸)
202rpred 12771 . . . . . . . 8 (𝜑𝑈 ∈ ℝ)
214rpred 12771 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2210rpred 12771 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
23 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
2421ltp1d 11905 . . . . . . . . 9 (𝜑𝐴 < (𝐴 + 1))
2524, 7breqtrrdi 5121 . . . . . . . 8 (𝜑𝐴 < 𝐷)
2620, 21, 22, 23, 25lelttrd 11133 . . . . . . 7 (𝜑𝑈 < 𝐷)
2710rpcnd 12773 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
2827mulid1d 10993 . . . . . . 7 (𝜑 → (𝐷 · 1) = 𝐷)
2926, 28breqtrrd 5107 . . . . . 6 (𝜑𝑈 < (𝐷 · 1))
30 1red 10977 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3120, 30, 10ltdivmuld 12822 . . . . . 6 (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1)))
3229, 31mpbird 256 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 1)
331, 32eqbrtrid 5114 . . . 4 (𝜑𝐸 < 1)
34 0xr 11023 . . . . 5 0 ∈ ℝ*
35 1xr 11035 . . . . 5 1 ∈ ℝ*
36 elioo2 13119 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1)))
3734, 35, 36mp2an 689 . . . 4 (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸𝐸 < 1))
3818, 19, 33, 37syl3anbrc 1342 . . 3 (𝜑𝐸 ∈ (0(,)1))
39 efgt1 15823 . . . . 5 ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸)))
4014, 39syl 17 . . . 4 (𝜑 → 1 < (exp‘(𝐵 / 𝐸)))
4140, 13breqtrrdi 5121 . . 3 (𝜑 → 1 < 𝐾)
42 1re 10976 . . . . . . . 8 1 ∈ ℝ
43 ltaddrp 12766 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
4442, 4, 43sylancr 587 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
452rpcnne0d 12780 . . . . . . . 8 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
46 divid 11662 . . . . . . . 8 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1)
4745, 46syl 17 . . . . . . 7 (𝜑 → (𝑈 / 𝑈) = 1)
484rpcnd 12773 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
49 ax-1cn 10930 . . . . . . . . 9 1 ∈ ℂ
50 addcom 11161 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
5148, 49, 50sylancl 586 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
527, 51eqtrid 2792 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
5344, 47, 523brtr4d 5111 . . . . . 6 (𝜑 → (𝑈 / 𝑈) < 𝐷)
5420, 2, 10, 53ltdiv23d 12838 . . . . 5 (𝜑 → (𝑈 / 𝐷) < 𝑈)
551, 54eqbrtrid 5114 . . . 4 (𝜑𝐸 < 𝑈)
56 difrp 12767 . . . . 5 ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5718, 20, 56syl2anc 584 . . . 4 (𝜑 → (𝐸 < 𝑈 ↔ (𝑈𝐸) ∈ ℝ+))
5855, 57mpbid 231 . . 3 (𝜑 → (𝑈𝐸) ∈ ℝ+)
5938, 41, 583jca 1127 . 2 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
6012, 17, 593jca 1127 1 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  *cxr 11009   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  2c2 12028  3c3 12029  cdc 12436  +crp 12729  (,)cioo 13078  cexp 13780  expce 15769  ψcchp 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-rp 12730  df-ioo 13082  df-ico 13084  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775
This theorem is referenced by:  pntlema  26742  pntlemb  26743  pntlemg  26744  pntlemh  26745  pntlemq  26747  pntlemr  26748  pntlemj  26749  pntlemi  26750  pntlemf  26751  pntlemo  26753  pntleme  26754  pntlemp  26756
  Copyright terms: Public domain W3C validator