Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pntlemc | Structured version Visualization version GIF version |
Description: Lemma for pnt 26760. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
Ref | Expression |
---|---|
pntlemc | ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
2 | pntlem1.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
3 | pntlem1.r | . . . . . 6 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
4 | pntlem1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
5 | pntlem1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
6 | pntlem1.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
7 | pntlem1.d | . . . . . 6 ⊢ 𝐷 = (𝐴 + 1) | |
8 | pntlem1.f | . . . . . 6 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
9 | 3, 4, 5, 6, 7, 8 | pntlemd 26740 | . . . . 5 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
10 | 9 | simp2d 1142 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
11 | 2, 10 | rpdivcld 12788 | . . 3 ⊢ (𝜑 → (𝑈 / 𝐷) ∈ ℝ+) |
12 | 1, 11 | eqeltrid 2845 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
13 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
14 | 5, 12 | rpdivcld 12788 | . . . . 5 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ+) |
15 | 14 | rpred 12771 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ) |
16 | 15 | rpefcld 15812 | . . 3 ⊢ (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+) |
17 | 13, 16 | eqeltrid 2845 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
18 | 12 | rpred 12771 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
19 | 12 | rpgt0d 12774 | . . . 4 ⊢ (𝜑 → 0 < 𝐸) |
20 | 2 | rpred 12771 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
21 | 4 | rpred 12771 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
22 | 10 | rpred 12771 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
23 | pntlem1.u2 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
24 | 21 | ltp1d 11905 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
25 | 24, 7 | breqtrrdi 5121 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐷) |
26 | 20, 21, 22, 23, 25 | lelttrd 11133 | . . . . . . 7 ⊢ (𝜑 → 𝑈 < 𝐷) |
27 | 10 | rpcnd 12773 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
28 | 27 | mulid1d 10993 | . . . . . . 7 ⊢ (𝜑 → (𝐷 · 1) = 𝐷) |
29 | 26, 28 | breqtrrd 5107 | . . . . . 6 ⊢ (𝜑 → 𝑈 < (𝐷 · 1)) |
30 | 1red 10977 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
31 | 20, 30, 10 | ltdivmuld 12822 | . . . . . 6 ⊢ (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1))) |
32 | 29, 31 | mpbird 256 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 1) |
33 | 1, 32 | eqbrtrid 5114 | . . . 4 ⊢ (𝜑 → 𝐸 < 1) |
34 | 0xr 11023 | . . . . 5 ⊢ 0 ∈ ℝ* | |
35 | 1xr 11035 | . . . . 5 ⊢ 1 ∈ ℝ* | |
36 | elioo2 13119 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1))) | |
37 | 34, 35, 36 | mp2an 689 | . . . 4 ⊢ (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1)) |
38 | 18, 19, 33, 37 | syl3anbrc 1342 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
39 | efgt1 15823 | . . . . 5 ⊢ ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸))) | |
40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 1 < (exp‘(𝐵 / 𝐸))) |
41 | 40, 13 | breqtrrdi 5121 | . . 3 ⊢ (𝜑 → 1 < 𝐾) |
42 | 1re 10976 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
43 | ltaddrp 12766 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
44 | 42, 4, 43 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
45 | 2 | rpcnne0d 12780 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0)) |
46 | divid 11662 | . . . . . . . 8 ⊢ ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1) | |
47 | 45, 46 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 / 𝑈) = 1) |
48 | 4 | rpcnd 12773 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
49 | ax-1cn 10930 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
50 | addcom 11161 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
51 | 48, 49, 50 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
52 | 7, 51 | eqtrid 2792 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
53 | 44, 47, 52 | 3brtr4d 5111 | . . . . . 6 ⊢ (𝜑 → (𝑈 / 𝑈) < 𝐷) |
54 | 20, 2, 10, 53 | ltdiv23d 12838 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 𝑈) |
55 | 1, 54 | eqbrtrid 5114 | . . . 4 ⊢ (𝜑 → 𝐸 < 𝑈) |
56 | difrp 12767 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) | |
57 | 18, 20, 56 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) |
58 | 55, 57 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
59 | 38, 41, 58 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
60 | 12, 17, 59 | 3jca 1127 | 1 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 · cmul 10877 ℝ*cxr 11009 < clt 11010 ≤ cle 11011 − cmin 11205 / cdiv 11632 2c2 12028 3c3 12029 ;cdc 12436 ℝ+crp 12729 (,)cioo 13078 ↑cexp 13780 expce 15769 ψcchp 26240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-rp 12730 df-ioo 13082 df-ico 13084 df-fz 13239 df-fzo 13382 df-fl 13510 df-seq 13720 df-exp 13781 df-fac 13986 df-bc 14015 df-hash 14043 df-shft 14776 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-ef 15775 |
This theorem is referenced by: pntlema 26742 pntlemb 26743 pntlemg 26744 pntlemh 26745 pntlemq 26747 pntlemr 26748 pntlemj 26749 pntlemi 26750 pntlemf 26751 pntlemo 26753 pntleme 26754 pntlemp 26756 |
Copyright terms: Public domain | W3C validator |