| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntlemc | Structured version Visualization version GIF version | ||
| Description: Lemma for pnt 27577. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntlem1.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| pntlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntlem1.l | ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| pntlem1.d | ⊢ 𝐷 = (𝐴 + 1) |
| pntlem1.f | ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| pntlem1.u | ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| pntlem1.u2 | ⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| pntlem1.e | ⊢ 𝐸 = (𝑈 / 𝐷) |
| pntlem1.k | ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| Ref | Expression |
|---|---|
| pntlemc | ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pntlem1.e | . . 3 ⊢ 𝐸 = (𝑈 / 𝐷) | |
| 2 | pntlem1.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℝ+) | |
| 3 | pntlem1.r | . . . . . 6 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 4 | pntlem1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 5 | pntlem1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 6 | pntlem1.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | |
| 7 | pntlem1.d | . . . . . 6 ⊢ 𝐷 = (𝐴 + 1) | |
| 8 | pntlem1.f | . . . . . 6 ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | |
| 9 | 3, 4, 5, 6, 7, 8 | pntlemd 27557 | . . . . 5 ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) |
| 10 | 9 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 11 | 2, 10 | rpdivcld 13068 | . . 3 ⊢ (𝜑 → (𝑈 / 𝐷) ∈ ℝ+) |
| 12 | 1, 11 | eqeltrid 2838 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| 13 | pntlem1.k | . . 3 ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | |
| 14 | 5, 12 | rpdivcld 13068 | . . . . 5 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ+) |
| 15 | 14 | rpred 13051 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ) |
| 16 | 15 | rpefcld 16123 | . . 3 ⊢ (𝜑 → (exp‘(𝐵 / 𝐸)) ∈ ℝ+) |
| 17 | 13, 16 | eqeltrid 2838 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ+) |
| 18 | 12 | rpred 13051 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 19 | 12 | rpgt0d 13054 | . . . 4 ⊢ (𝜑 → 0 < 𝐸) |
| 20 | 2 | rpred 13051 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 21 | 4 | rpred 13051 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 22 | 10 | rpred 13051 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 23 | pntlem1.u2 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ≤ 𝐴) | |
| 24 | 21 | ltp1d 12172 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| 25 | 24, 7 | breqtrrdi 5161 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐷) |
| 26 | 20, 21, 22, 23, 25 | lelttrd 11393 | . . . . . . 7 ⊢ (𝜑 → 𝑈 < 𝐷) |
| 27 | 10 | rpcnd 13053 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 28 | 27 | mulridd 11252 | . . . . . . 7 ⊢ (𝜑 → (𝐷 · 1) = 𝐷) |
| 29 | 26, 28 | breqtrrd 5147 | . . . . . 6 ⊢ (𝜑 → 𝑈 < (𝐷 · 1)) |
| 30 | 1red 11236 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 31 | 20, 30, 10 | ltdivmuld 13102 | . . . . . 6 ⊢ (𝜑 → ((𝑈 / 𝐷) < 1 ↔ 𝑈 < (𝐷 · 1))) |
| 32 | 29, 31 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 1) |
| 33 | 1, 32 | eqbrtrid 5154 | . . . 4 ⊢ (𝜑 → 𝐸 < 1) |
| 34 | 0xr 11282 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 35 | 1xr 11294 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 36 | elioo2 13403 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1))) | |
| 37 | 34, 35, 36 | mp2an 692 | . . . 4 ⊢ (𝐸 ∈ (0(,)1) ↔ (𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1)) |
| 38 | 18, 19, 33, 37 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
| 39 | efgt1 16134 | . . . . 5 ⊢ ((𝐵 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐵 / 𝐸))) | |
| 40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 1 < (exp‘(𝐵 / 𝐸))) |
| 41 | 40, 13 | breqtrrdi 5161 | . . 3 ⊢ (𝜑 → 1 < 𝐾) |
| 42 | 1re 11235 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 43 | ltaddrp 13046 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴)) | |
| 44 | 42, 4, 43 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → 1 < (1 + 𝐴)) |
| 45 | 2 | rpcnne0d 13060 | . . . . . . . 8 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0)) |
| 46 | divid 11927 | . . . . . . . 8 ⊢ ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 / 𝑈) = 1) | |
| 47 | 45, 46 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 / 𝑈) = 1) |
| 48 | 4 | rpcnd 13053 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 49 | ax-1cn 11187 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 50 | addcom 11421 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴)) | |
| 51 | 48, 49, 50 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 1) = (1 + 𝐴)) |
| 52 | 7, 51 | eqtrid 2782 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (1 + 𝐴)) |
| 53 | 44, 47, 52 | 3brtr4d 5151 | . . . . . 6 ⊢ (𝜑 → (𝑈 / 𝑈) < 𝐷) |
| 54 | 20, 2, 10, 53 | ltdiv23d 13118 | . . . . 5 ⊢ (𝜑 → (𝑈 / 𝐷) < 𝑈) |
| 55 | 1, 54 | eqbrtrid 5154 | . . . 4 ⊢ (𝜑 → 𝐸 < 𝑈) |
| 56 | difrp 13047 | . . . . 5 ⊢ ((𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) | |
| 57 | 18, 20, 56 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐸 < 𝑈 ↔ (𝑈 − 𝐸) ∈ ℝ+)) |
| 58 | 55, 57 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ+) |
| 59 | 38, 41, 58 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+)) |
| 60 | 12, 17, 59 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 − cmin 11466 / cdiv 11894 2c2 12295 3c3 12296 ;cdc 12708 ℝ+crp 13008 (,)cioo 13362 ↑cexp 14079 expce 16077 ψcchp 27055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-ioo 13366 df-ico 13368 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 |
| This theorem is referenced by: pntlema 27559 pntlemb 27560 pntlemg 27561 pntlemh 27562 pntlemq 27564 pntlemr 27565 pntlemj 27566 pntlemi 27567 pntlemf 27568 pntlemo 27570 pntleme 27571 pntlemp 27573 |
| Copyright terms: Public domain | W3C validator |