MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcn Structured version   Visualization version   GIF version

Theorem ptcn 22232
Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptcn.2 𝐾 = (∏t𝐹)
ptcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcn.4 (𝜑𝐼𝑉)
ptcn.5 (𝜑𝐹:𝐼⟶Top)
ptcn.6 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
Assertion
Ref Expression
ptcn (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝑋,𝑥   𝑥,𝐾   𝑘,𝑉,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑘)

Proof of Theorem ptcn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ptcn.3 . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 484 . . . . . . . . 9 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcn.5 . . . . . . . . . . 11 (𝜑𝐹:𝐼⟶Top)
43ffvelrnda 6828 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 toptopon2 21523 . . . . . . . . . 10 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
64, 5sylib 221 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
7 ptcn.6 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
8 cnf2 21854 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘))) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
92, 6, 7, 8syl3anc 1368 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
109fvmptelrn 6854 . . . . . . 7 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1110an32s 651 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1211ralrimiva 3149 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
13 ptcn.4 . . . . . . 7 (𝜑𝐼𝑉)
1413adantr 484 . . . . . 6 ((𝜑𝑥𝑋) → 𝐼𝑉)
15 mptelixpg 8482 . . . . . 6 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1614, 15syl 17 . . . . 5 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1712, 16mpbird 260 . . . 4 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
18 ptcn.2 . . . . . . 7 𝐾 = (∏t𝐹)
1918ptuni 22199 . . . . . 6 ((𝐼𝑉𝐹:𝐼⟶Top) → X𝑘𝐼 (𝐹𝑘) = 𝐾)
2013, 3, 19syl2anc 587 . . . . 5 (𝜑X𝑘𝐼 (𝐹𝑘) = 𝐾)
2120adantr 484 . . . 4 ((𝜑𝑥𝑋) → X𝑘𝐼 (𝐹𝑘) = 𝐾)
2217, 21eleqtrd 2892 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ 𝐾)
2322fmpttd 6856 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾)
241adantr 484 . . . 4 ((𝜑𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2513adantr 484 . . . 4 ((𝜑𝑧𝑋) → 𝐼𝑉)
263adantr 484 . . . 4 ((𝜑𝑧𝑋) → 𝐹:𝐼⟶Top)
27 simpr 488 . . . 4 ((𝜑𝑧𝑋) → 𝑧𝑋)
287adantlr 714 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
29 simplr 768 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑧𝑋)
30 toponuni 21519 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
311, 30syl 17 . . . . . . 7 (𝜑𝑋 = 𝐽)
3231ad2antrr 725 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑋 = 𝐽)
3329, 32eleqtrd 2892 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑧 𝐽)
34 eqid 2798 . . . . . 6 𝐽 = 𝐽
3534cncnpi 21883 . . . . 5 (((𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑧 𝐽) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝑧))
3628, 33, 35syl2anc 587 . . . 4 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝑧))
3718, 24, 25, 26, 27, 36ptcnp 22227 . . 3 ((𝜑𝑧𝑋) → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))
3837ralrimiva 3149 . 2 (𝜑 → ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))
39 pttop 22187 . . . . . 6 ((𝐼𝑉𝐹:𝐼⟶Top) → (∏t𝐹) ∈ Top)
4013, 3, 39syl2anc 587 . . . . 5 (𝜑 → (∏t𝐹) ∈ Top)
4118, 40eqeltrid 2894 . . . 4 (𝜑𝐾 ∈ Top)
42 toptopon2 21523 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
4341, 42sylib 221 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
44 cncnp 21885 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾 ∧ ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))))
451, 43, 44syl2anc 587 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾 ∧ ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))))
4623, 38, 45mpbir2and 712 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106   cuni 4800  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  Xcixp 8444  tcpt 16704  Topctop 21498  TopOnctopon 21515   Cn ccn 21829   CnP ccnp 21830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-fin 8496  df-fi 8859  df-topgen 16709  df-pt 16710  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cnp 21833
This theorem is referenced by:  pt1hmeo  22411  ptunhmeo  22413  symgtgp  22711  prdstmdd  22729  prdstgpd  22730  ptpconn  32593  broucube  35091
  Copyright terms: Public domain W3C validator