MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcn Structured version   Visualization version   GIF version

Theorem ptcn 23514
Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptcn.2 𝐾 = (∏t𝐹)
ptcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcn.4 (𝜑𝐼𝑉)
ptcn.5 (𝜑𝐹:𝐼⟶Top)
ptcn.6 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
Assertion
Ref Expression
ptcn (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝑋,𝑥   𝑥,𝐾   𝑘,𝑉,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑘)

Proof of Theorem ptcn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ptcn.3 . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 480 . . . . . . . . 9 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcn.5 . . . . . . . . . . 11 (𝜑𝐹:𝐼⟶Top)
43ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 toptopon2 22805 . . . . . . . . . 10 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
64, 5sylib 218 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
7 ptcn.6 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
8 cnf2 23136 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘))) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
92, 6, 7, 8syl3anc 1373 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
109fvmptelcdm 7085 . . . . . . 7 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1110an32s 652 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1211ralrimiva 3125 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
13 ptcn.4 . . . . . . 7 (𝜑𝐼𝑉)
1413adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐼𝑉)
15 mptelixpg 8908 . . . . . 6 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1614, 15syl 17 . . . . 5 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1712, 16mpbird 257 . . . 4 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
18 ptcn.2 . . . . . . 7 𝐾 = (∏t𝐹)
1918ptuni 23481 . . . . . 6 ((𝐼𝑉𝐹:𝐼⟶Top) → X𝑘𝐼 (𝐹𝑘) = 𝐾)
2013, 3, 19syl2anc 584 . . . . 5 (𝜑X𝑘𝐼 (𝐹𝑘) = 𝐾)
2120adantr 480 . . . 4 ((𝜑𝑥𝑋) → X𝑘𝐼 (𝐹𝑘) = 𝐾)
2217, 21eleqtrd 2830 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ 𝐾)
2322fmpttd 7087 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾)
241adantr 480 . . . 4 ((𝜑𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2513adantr 480 . . . 4 ((𝜑𝑧𝑋) → 𝐼𝑉)
263adantr 480 . . . 4 ((𝜑𝑧𝑋) → 𝐹:𝐼⟶Top)
27 simpr 484 . . . 4 ((𝜑𝑧𝑋) → 𝑧𝑋)
287adantlr 715 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
29 simplr 768 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑧𝑋)
30 toponuni 22801 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
311, 30syl 17 . . . . . . 7 (𝜑𝑋 = 𝐽)
3231ad2antrr 726 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑋 = 𝐽)
3329, 32eleqtrd 2830 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑧 𝐽)
34 eqid 2729 . . . . . 6 𝐽 = 𝐽
3534cncnpi 23165 . . . . 5 (((𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑧 𝐽) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝑧))
3628, 33, 35syl2anc 584 . . . 4 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝑧))
3718, 24, 25, 26, 27, 36ptcnp 23509 . . 3 ((𝜑𝑧𝑋) → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))
3837ralrimiva 3125 . 2 (𝜑 → ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))
39 pttop 23469 . . . . . 6 ((𝐼𝑉𝐹:𝐼⟶Top) → (∏t𝐹) ∈ Top)
4013, 3, 39syl2anc 584 . . . . 5 (𝜑 → (∏t𝐹) ∈ Top)
4118, 40eqeltrid 2832 . . . 4 (𝜑𝐾 ∈ Top)
42 toptopon2 22805 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
4341, 42sylib 218 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
44 cncnp 23167 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾 ∧ ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))))
451, 43, 44syl2anc 584 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾 ∧ ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))))
4623, 38, 45mpbir2and 713 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   cuni 4871  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Xcixp 8870  tcpt 17401  Topctop 22780  TopOnctopon 22797   Cn ccn 23111   CnP ccnp 23112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-topgen 17406  df-pt 17407  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-cnp 23115
This theorem is referenced by:  pt1hmeo  23693  ptunhmeo  23695  symgtgp  23993  prdstmdd  24011  prdstgpd  24012  ptpconn  35220  broucube  37648
  Copyright terms: Public domain W3C validator