Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem15 Structured version   Visualization version   GIF version

Theorem lcmineqlem15 41451
Description: F times the least common multiple of 1 to n is a natural number. (Contributed by metakunt, 10-May-2024.)
Hypotheses
Ref Expression
lcmineqlem15.1 ๐น = โˆซ(0[,]1)((๐‘ฅโ†‘(๐‘€ โˆ’ 1)) ยท ((1 โˆ’ ๐‘ฅ)โ†‘(๐‘ โˆ’ ๐‘€))) d๐‘ฅ
lcmineqlem15.2 (๐œ‘ โ†’ ๐‘ โˆˆ โ„•)
lcmineqlem15.3 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•)
lcmineqlem15.4 (๐œ‘ โ†’ ๐‘€ โ‰ค ๐‘)
Assertion
Ref Expression
lcmineqlem15 (๐œ‘ โ†’ ((lcmโ€˜(1...๐‘)) ยท ๐น) โˆˆ โ„•)
Distinct variable groups:   ๐‘ฅ,๐‘€   ๐‘ฅ,๐‘   ๐œ‘,๐‘ฅ
Allowed substitution hint:   ๐น(๐‘ฅ)

Proof of Theorem lcmineqlem15
StepHypRef Expression
1 lcmineqlem15.1 . . 3 ๐น = โˆซ(0[,]1)((๐‘ฅโ†‘(๐‘€ โˆ’ 1)) ยท ((1 โˆ’ ๐‘ฅ)โ†‘(๐‘ โˆ’ ๐‘€))) d๐‘ฅ
2 lcmineqlem15.2 . . 3 (๐œ‘ โ†’ ๐‘ โˆˆ โ„•)
3 lcmineqlem15.3 . . 3 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•)
4 lcmineqlem15.4 . . 3 (๐œ‘ โ†’ ๐‘€ โ‰ค ๐‘)
51, 2, 3, 4lcmineqlem6 41442 . 2 (๐œ‘ โ†’ ((lcmโ€˜(1...๐‘)) ยท ๐น) โˆˆ โ„ค)
6 fz1ssnn 13556 . . . . . 6 (1...๐‘) โІ โ„•
7 fzfi 13961 . . . . . 6 (1...๐‘) โˆˆ Fin
8 lcmfnncl 16591 . . . . . 6 (((1...๐‘) โІ โ„• โˆง (1...๐‘) โˆˆ Fin) โ†’ (lcmโ€˜(1...๐‘)) โˆˆ โ„•)
96, 7, 8mp2an 691 . . . . 5 (lcmโ€˜(1...๐‘)) โˆˆ โ„•
109a1i 11 . . . 4 (๐œ‘ โ†’ (lcmโ€˜(1...๐‘)) โˆˆ โ„•)
1110nnred 12249 . . 3 (๐œ‘ โ†’ (lcmโ€˜(1...๐‘)) โˆˆ โ„)
121, 3, 2, 4lcmineqlem13 41449 . . . 4 (๐œ‘ โ†’ ๐น = (1 / (๐‘€ ยท (๐‘C๐‘€))))
13 1red 11237 . . . . 5 (๐œ‘ โ†’ 1 โˆˆ โ„)
143nnnn0d 12554 . . . . . . . 8 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•0)
152, 14, 4bccl2d 41399 . . . . . . 7 (๐œ‘ โ†’ (๐‘C๐‘€) โˆˆ โ„•)
163, 15nnmulcld 12287 . . . . . 6 (๐œ‘ โ†’ (๐‘€ ยท (๐‘C๐‘€)) โˆˆ โ„•)
1716nnred 12249 . . . . 5 (๐œ‘ โ†’ (๐‘€ ยท (๐‘C๐‘€)) โˆˆ โ„)
1816nnne0d 12284 . . . . 5 (๐œ‘ โ†’ (๐‘€ ยท (๐‘C๐‘€)) โ‰  0)
1913, 17, 18redivcld 12064 . . . 4 (๐œ‘ โ†’ (1 / (๐‘€ ยท (๐‘C๐‘€))) โˆˆ โ„)
2012, 19eqeltrd 2828 . . 3 (๐œ‘ โ†’ ๐น โˆˆ โ„)
2110nngt0d 12283 . . 3 (๐œ‘ โ†’ 0 < (lcmโ€˜(1...๐‘)))
22 nnrecgt0 12277 . . . . 5 ((๐‘€ ยท (๐‘C๐‘€)) โˆˆ โ„• โ†’ 0 < (1 / (๐‘€ ยท (๐‘C๐‘€))))
2316, 22syl 17 . . . 4 (๐œ‘ โ†’ 0 < (1 / (๐‘€ ยท (๐‘C๐‘€))))
2423, 12breqtrrd 5170 . . 3 (๐œ‘ โ†’ 0 < ๐น)
2511, 20, 21, 24mulgt0d 11391 . 2 (๐œ‘ โ†’ 0 < ((lcmโ€˜(1...๐‘)) ยท ๐น))
26 elnnz 12590 . 2 (((lcmโ€˜(1...๐‘)) ยท ๐น) โˆˆ โ„• โ†” (((lcmโ€˜(1...๐‘)) ยท ๐น) โˆˆ โ„ค โˆง 0 < ((lcmโ€˜(1...๐‘)) ยท ๐น)))
275, 25, 26sylanbrc 582 1 (๐œ‘ โ†’ ((lcmโ€˜(1...๐‘)) ยท ๐น) โˆˆ โ„•)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1534   โˆˆ wcel 2099   โІ wss 3944   class class class wbr 5142  โ€˜cfv 6542  (class class class)co 7414  Fincfn 8955  โ„cr 11129  0cc0 11130  1c1 11131   ยท cmul 11135   < clt 11270   โ‰ค cle 11271   โˆ’ cmin 11466   / cdiv 11893  โ„•cn 12234  โ„คcz 12580  [,]cicc 13351  ...cfz 13508  โ†‘cexp 14050  Ccbc 14285  lcmclcmf 16551  โˆซcitg 25534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cc 10450  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-symdif 4238  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-fi 9426  df-sup 9457  df-inf 9458  df-oi 9525  df-dju 9916  df-card 9954  df-acn 9957  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ioo 13352  df-ioc 13353  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-fac 14257  df-bc 14286  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457  df-sum 15657  df-prod 15874  df-dvds 16223  df-lcmf 16553  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-rest 17395  df-topn 17396  df-0g 17414  df-gsum 17415  df-topgen 17416  df-pt 17417  df-prds 17420  df-xrs 17475  df-qtop 17480  df-imas 17481  df-xps 17483  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-mulg 19015  df-cntz 19259  df-cmn 19728  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-fbas 21263  df-fg 21264  df-cnfld 21267  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cld 22910  df-ntr 22911  df-cls 22912  df-nei 22989  df-lp 23027  df-perf 23028  df-cn 23118  df-cnp 23119  df-haus 23206  df-cmp 23278  df-tx 23453  df-hmeo 23646  df-fil 23737  df-fm 23829  df-flim 23830  df-flf 23831  df-xms 24213  df-ms 24214  df-tms 24215  df-cncf 24785  df-ovol 25380  df-vol 25381  df-mbf 25535  df-itg1 25536  df-itg2 25537  df-ibl 25538  df-itg 25539  df-0p 25586  df-limc 25782  df-dv 25783
This theorem is referenced by:  lcmineqlem16  41452
  Copyright terms: Public domain W3C validator