Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem6 Structured version   Visualization version   GIF version

Theorem stirlinglem6 46034
Description: A series that converges to log((𝑁 + 1) / 𝑁). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem6.1 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
Assertion
Ref Expression
stirlinglem6 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Distinct variable group:   𝑗,𝑁
Allowed substitution hint:   𝐻(𝑗)

Proof of Theorem stirlinglem6
StepHypRef Expression
1 eqid 2734 . . 3 (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
2 eqid 2734 . . 3 (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) = (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))
3 eqid 2734 . . 3 (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
4 stirlinglem6.1 . . 3 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
5 eqid 2734 . . 3 (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)) = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
6 2re 12337 . . . . . . 7 2 ∈ ℝ
76a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 12270 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
97, 8remulcld 11288 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
10 0le2 12365 . . . . . . 7 0 ≤ 2
1110a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 2)
12 0red 11261 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ ℝ)
13 nngt0 12294 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
1412, 8, 13ltled 11406 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
157, 8, 11, 14mulge0d 11837 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
169, 15ge0p1rpd 13104 . . . 4 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
1716rpreccld 13084 . . 3 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
18 1red 11259 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
1918renegcld 11687 . . . . 5 (𝑁 ∈ ℕ → -1 ∈ ℝ)
2017rpred 13074 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
21 neg1lt0 12380 . . . . . 6 -1 < 0
2221a1i 11 . . . . 5 (𝑁 ∈ ℕ → -1 < 0)
2317rpgt0d 13077 . . . . 5 (𝑁 ∈ ℕ → 0 < (1 / ((2 · 𝑁) + 1)))
2419, 12, 20, 22, 23lttrd 11419 . . . 4 (𝑁 ∈ ℕ → -1 < (1 / ((2 · 𝑁) + 1)))
25 1rp 13035 . . . . . 6 1 ∈ ℝ+
2625a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℝ+)
27 1cnd 11253 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2827div1d 12032 . . . . . 6 (𝑁 ∈ ℕ → (1 / 1) = 1)
29 2rp 13036 . . . . . . . . 9 2 ∈ ℝ+
3029a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 13043 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3230, 31rpmulcld 13090 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3318, 32ltaddrp2d 13108 . . . . . 6 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
3428, 33eqbrtrd 5169 . . . . 5 (𝑁 ∈ ℕ → (1 / 1) < ((2 · 𝑁) + 1))
3526, 16, 34ltrec1d 13094 . . . 4 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) < 1)
3620, 18absltd 15464 . . . 4 (𝑁 ∈ ℕ → ((abs‘(1 / ((2 · 𝑁) + 1))) < 1 ↔ (-1 < (1 / ((2 · 𝑁) + 1)) ∧ (1 / ((2 · 𝑁) + 1)) < 1)))
3724, 35, 36mpbir2and 713 . . 3 (𝑁 ∈ ℕ → (abs‘(1 / ((2 · 𝑁) + 1))) < 1)
381, 2, 3, 4, 5, 17, 37stirlinglem5 46033 . 2 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))))
39 2cnd 12341 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℂ)
40 nncn 12271 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4139, 40mulcld 11278 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
4241, 27addcld 11277 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
439, 18readdcld 11287 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
44 2pos 12366 . . . . . . . . . . . 12 0 < 2
4544a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 2)
467, 8, 45, 13mulgt0d 11413 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < (2 · 𝑁))
479ltp1d 12195 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) < ((2 · 𝑁) + 1))
4812, 9, 43, 46, 47lttrd 11419 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4948gt0ne0d 11824 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
5042, 49dividd 12038 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) = 1)
5150eqcomd 2740 . . . . . 6 (𝑁 ∈ ℕ → 1 = (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)))
5251oveq1d 7445 . . . . 5 (𝑁 ∈ ℕ → (1 + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5351oveq1d 7445 . . . . 5 (𝑁 ∈ ℕ → (1 − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5452, 53oveq12d 7448 . . . 4 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))))
5542, 27, 42, 49divdird 12078 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5655eqcomd 2740 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)))
5742, 27, 42, 49divsubdird 12079 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5857eqcomd 2740 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)))
5956, 58oveq12d 7448 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))))
6041, 27, 27addassd 11280 . . . . . . . 8 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
61 1p1e2 12388 . . . . . . . . . 10 (1 + 1) = 2
6261a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 + 1) = 2)
6362oveq2d 7446 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + (1 + 1)) = ((2 · 𝑁) + 2))
6439mulridd 11275 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 1) = 2)
6564eqcomd 2740 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 = (2 · 1))
6665oveq2d 7446 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = ((2 · 𝑁) + (2 · 1)))
6739, 40, 27adddid 11282 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
6866, 67eqtr4d 2777 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = (2 · (𝑁 + 1)))
6960, 63, 683eqtrd 2778 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = (2 · (𝑁 + 1)))
7069oveq1d 7445 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)))
7141, 27pncand 11618 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁))
7271oveq1d 7445 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((2 · 𝑁) / ((2 · 𝑁) + 1)))
7370, 72oveq12d 7448 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7459, 73eqtrd 2774 . . . 4 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7540, 27addcld 11277 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
7639, 75mulcld 11278 . . . . . 6 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) ∈ ℂ)
7746gt0ne0d 11824 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ≠ 0)
7876, 41, 42, 77, 49divcan7d 12068 . . . . 5 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
7945gt0ne0d 11824 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
8013gt0ne0d 11824 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8139, 39, 75, 40, 79, 80divmuldivd 12081 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
8281eqcomd 2740 . . . . 5 (𝑁 ∈ ℕ → ((2 · (𝑁 + 1)) / (2 · 𝑁)) = ((2 / 2) · ((𝑁 + 1) / 𝑁)))
8339, 79dividd 12038 . . . . . . 7 (𝑁 ∈ ℕ → (2 / 2) = 1)
8483oveq1d 7445 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = (1 · ((𝑁 + 1) / 𝑁)))
8575, 40, 80divcld 12040 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
8685mullidd 11276 . . . . . 6 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8784, 86eqtrd 2774 . . . . 5 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8878, 82, 873eqtrd 2778 . . . 4 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((𝑁 + 1) / 𝑁))
8954, 74, 883eqtrd 2778 . . 3 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = ((𝑁 + 1) / 𝑁))
9089fveq2d 6910 . 2 (𝑁 ∈ ℕ → (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))) = (log‘((𝑁 + 1) / 𝑁)))
9138, 90breqtrd 5173 1 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  +crp 13031  seqcseq 14038  cexp 14098  abscabs 15269  cli 15516  logclog 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-dvds 16287  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-ulm 26434  df-log 26612
This theorem is referenced by:  stirlinglem7  46035
  Copyright terms: Public domain W3C validator