Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem6 Structured version   Visualization version   GIF version

Theorem stirlinglem6 46187
Description: A series that converges to log((𝑁 + 1) / 𝑁). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem6.1 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
Assertion
Ref Expression
stirlinglem6 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Distinct variable group:   𝑗,𝑁
Allowed substitution hint:   𝐻(𝑗)

Proof of Theorem stirlinglem6
StepHypRef Expression
1 eqid 2731 . . 3 (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
2 eqid 2731 . . 3 (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) = (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))
3 eqid 2731 . . 3 (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
4 stirlinglem6.1 . . 3 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
5 eqid 2731 . . 3 (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)) = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
6 2re 12199 . . . . . . 7 2 ∈ ℝ
76a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 12132 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
97, 8remulcld 11142 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
10 0le2 12227 . . . . . . 7 0 ≤ 2
1110a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 2)
12 0red 11115 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ ℝ)
13 nngt0 12156 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
1412, 8, 13ltled 11261 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
157, 8, 11, 14mulge0d 11694 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
169, 15ge0p1rpd 12964 . . . 4 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
1716rpreccld 12944 . . 3 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
18 1red 11113 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
1918renegcld 11544 . . . . 5 (𝑁 ∈ ℕ → -1 ∈ ℝ)
2017rpred 12934 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
21 neg1lt0 12113 . . . . . 6 -1 < 0
2221a1i 11 . . . . 5 (𝑁 ∈ ℕ → -1 < 0)
2317rpgt0d 12937 . . . . 5 (𝑁 ∈ ℕ → 0 < (1 / ((2 · 𝑁) + 1)))
2419, 12, 20, 22, 23lttrd 11274 . . . 4 (𝑁 ∈ ℕ → -1 < (1 / ((2 · 𝑁) + 1)))
25 1rp 12894 . . . . . 6 1 ∈ ℝ+
2625a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℝ+)
27 1cnd 11107 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2827div1d 11889 . . . . . 6 (𝑁 ∈ ℕ → (1 / 1) = 1)
29 2rp 12895 . . . . . . . . 9 2 ∈ ℝ+
3029a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 12902 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3230, 31rpmulcld 12950 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3318, 32ltaddrp2d 12968 . . . . . 6 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
3428, 33eqbrtrd 5111 . . . . 5 (𝑁 ∈ ℕ → (1 / 1) < ((2 · 𝑁) + 1))
3526, 16, 34ltrec1d 12954 . . . 4 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) < 1)
3620, 18absltd 15339 . . . 4 (𝑁 ∈ ℕ → ((abs‘(1 / ((2 · 𝑁) + 1))) < 1 ↔ (-1 < (1 / ((2 · 𝑁) + 1)) ∧ (1 / ((2 · 𝑁) + 1)) < 1)))
3724, 35, 36mpbir2and 713 . . 3 (𝑁 ∈ ℕ → (abs‘(1 / ((2 · 𝑁) + 1))) < 1)
381, 2, 3, 4, 5, 17, 37stirlinglem5 46186 . 2 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))))
39 2cnd 12203 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℂ)
40 nncn 12133 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4139, 40mulcld 11132 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
4241, 27addcld 11131 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
439, 18readdcld 11141 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
44 2pos 12228 . . . . . . . . . . . 12 0 < 2
4544a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 2)
467, 8, 45, 13mulgt0d 11268 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < (2 · 𝑁))
479ltp1d 12052 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) < ((2 · 𝑁) + 1))
4812, 9, 43, 46, 47lttrd 11274 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4948gt0ne0d 11681 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
5042, 49dividd 11895 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) = 1)
5150eqcomd 2737 . . . . . 6 (𝑁 ∈ ℕ → 1 = (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)))
5251oveq1d 7361 . . . . 5 (𝑁 ∈ ℕ → (1 + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5351oveq1d 7361 . . . . 5 (𝑁 ∈ ℕ → (1 − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5452, 53oveq12d 7364 . . . 4 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))))
5542, 27, 42, 49divdird 11935 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5655eqcomd 2737 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)))
5742, 27, 42, 49divsubdird 11936 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5857eqcomd 2737 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)))
5956, 58oveq12d 7364 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))))
6041, 27, 27addassd 11134 . . . . . . . 8 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
61 1p1e2 12245 . . . . . . . . . 10 (1 + 1) = 2
6261a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 + 1) = 2)
6362oveq2d 7362 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + (1 + 1)) = ((2 · 𝑁) + 2))
6439mulridd 11129 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 1) = 2)
6564eqcomd 2737 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 = (2 · 1))
6665oveq2d 7362 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = ((2 · 𝑁) + (2 · 1)))
6739, 40, 27adddid 11136 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
6866, 67eqtr4d 2769 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = (2 · (𝑁 + 1)))
6960, 63, 683eqtrd 2770 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = (2 · (𝑁 + 1)))
7069oveq1d 7361 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)))
7141, 27pncand 11473 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁))
7271oveq1d 7361 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((2 · 𝑁) / ((2 · 𝑁) + 1)))
7370, 72oveq12d 7364 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7459, 73eqtrd 2766 . . . 4 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7540, 27addcld 11131 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
7639, 75mulcld 11132 . . . . . 6 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) ∈ ℂ)
7746gt0ne0d 11681 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ≠ 0)
7876, 41, 42, 77, 49divcan7d 11925 . . . . 5 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
7945gt0ne0d 11681 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
8013gt0ne0d 11681 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8139, 39, 75, 40, 79, 80divmuldivd 11938 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
8281eqcomd 2737 . . . . 5 (𝑁 ∈ ℕ → ((2 · (𝑁 + 1)) / (2 · 𝑁)) = ((2 / 2) · ((𝑁 + 1) / 𝑁)))
8339, 79dividd 11895 . . . . . . 7 (𝑁 ∈ ℕ → (2 / 2) = 1)
8483oveq1d 7361 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = (1 · ((𝑁 + 1) / 𝑁)))
8575, 40, 80divcld 11897 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
8685mullidd 11130 . . . . . 6 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8784, 86eqtrd 2766 . . . . 5 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8878, 82, 873eqtrd 2770 . . . 4 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((𝑁 + 1) / 𝑁))
8954, 74, 883eqtrd 2770 . . 3 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = ((𝑁 + 1) / 𝑁))
9089fveq2d 6826 . 2 (𝑁 ∈ ℕ → (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))) = (log‘((𝑁 + 1) / 𝑁)))
9138, 90breqtrd 5115 1 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  +crp 12890  seqcseq 13908  cexp 13968  abscabs 15141  cli 15391  logclog 26490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-ulm 26313  df-log 26492
This theorem is referenced by:  stirlinglem7  46188
  Copyright terms: Public domain W3C validator