Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem6 Structured version   Visualization version   GIF version

Theorem stirlinglem6 46070
Description: A series that converges to log((𝑁 + 1) / 𝑁). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem6.1 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
Assertion
Ref Expression
stirlinglem6 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Distinct variable group:   𝑗,𝑁
Allowed substitution hint:   𝐻(𝑗)

Proof of Theorem stirlinglem6
StepHypRef Expression
1 eqid 2729 . . 3 (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
2 eqid 2729 . . 3 (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) = (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))
3 eqid 2729 . . 3 (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
4 stirlinglem6.1 . . 3 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
5 eqid 2729 . . 3 (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)) = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
6 2re 12202 . . . . . . 7 2 ∈ ℝ
76a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 12135 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
97, 8remulcld 11145 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
10 0le2 12230 . . . . . . 7 0 ≤ 2
1110a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 2)
12 0red 11118 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ ℝ)
13 nngt0 12159 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
1412, 8, 13ltled 11264 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
157, 8, 11, 14mulge0d 11697 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
169, 15ge0p1rpd 12967 . . . 4 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
1716rpreccld 12947 . . 3 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
18 1red 11116 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
1918renegcld 11547 . . . . 5 (𝑁 ∈ ℕ → -1 ∈ ℝ)
2017rpred 12937 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
21 neg1lt0 12116 . . . . . 6 -1 < 0
2221a1i 11 . . . . 5 (𝑁 ∈ ℕ → -1 < 0)
2317rpgt0d 12940 . . . . 5 (𝑁 ∈ ℕ → 0 < (1 / ((2 · 𝑁) + 1)))
2419, 12, 20, 22, 23lttrd 11277 . . . 4 (𝑁 ∈ ℕ → -1 < (1 / ((2 · 𝑁) + 1)))
25 1rp 12897 . . . . . 6 1 ∈ ℝ+
2625a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℝ+)
27 1cnd 11110 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2827div1d 11892 . . . . . 6 (𝑁 ∈ ℕ → (1 / 1) = 1)
29 2rp 12898 . . . . . . . . 9 2 ∈ ℝ+
3029a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 12905 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3230, 31rpmulcld 12953 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3318, 32ltaddrp2d 12971 . . . . . 6 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
3428, 33eqbrtrd 5114 . . . . 5 (𝑁 ∈ ℕ → (1 / 1) < ((2 · 𝑁) + 1))
3526, 16, 34ltrec1d 12957 . . . 4 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) < 1)
3620, 18absltd 15339 . . . 4 (𝑁 ∈ ℕ → ((abs‘(1 / ((2 · 𝑁) + 1))) < 1 ↔ (-1 < (1 / ((2 · 𝑁) + 1)) ∧ (1 / ((2 · 𝑁) + 1)) < 1)))
3724, 35, 36mpbir2and 713 . . 3 (𝑁 ∈ ℕ → (abs‘(1 / ((2 · 𝑁) + 1))) < 1)
381, 2, 3, 4, 5, 17, 37stirlinglem5 46069 . 2 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))))
39 2cnd 12206 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℂ)
40 nncn 12136 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4139, 40mulcld 11135 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
4241, 27addcld 11134 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
439, 18readdcld 11144 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
44 2pos 12231 . . . . . . . . . . . 12 0 < 2
4544a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 2)
467, 8, 45, 13mulgt0d 11271 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < (2 · 𝑁))
479ltp1d 12055 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) < ((2 · 𝑁) + 1))
4812, 9, 43, 46, 47lttrd 11277 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4948gt0ne0d 11684 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
5042, 49dividd 11898 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) = 1)
5150eqcomd 2735 . . . . . 6 (𝑁 ∈ ℕ → 1 = (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)))
5251oveq1d 7364 . . . . 5 (𝑁 ∈ ℕ → (1 + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5351oveq1d 7364 . . . . 5 (𝑁 ∈ ℕ → (1 − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5452, 53oveq12d 7367 . . . 4 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))))
5542, 27, 42, 49divdird 11938 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5655eqcomd 2735 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)))
5742, 27, 42, 49divsubdird 11939 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5857eqcomd 2735 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)))
5956, 58oveq12d 7367 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))))
6041, 27, 27addassd 11137 . . . . . . . 8 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
61 1p1e2 12248 . . . . . . . . . 10 (1 + 1) = 2
6261a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 + 1) = 2)
6362oveq2d 7365 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + (1 + 1)) = ((2 · 𝑁) + 2))
6439mulridd 11132 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 1) = 2)
6564eqcomd 2735 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 = (2 · 1))
6665oveq2d 7365 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = ((2 · 𝑁) + (2 · 1)))
6739, 40, 27adddid 11139 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
6866, 67eqtr4d 2767 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = (2 · (𝑁 + 1)))
6960, 63, 683eqtrd 2768 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = (2 · (𝑁 + 1)))
7069oveq1d 7364 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)))
7141, 27pncand 11476 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁))
7271oveq1d 7364 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((2 · 𝑁) / ((2 · 𝑁) + 1)))
7370, 72oveq12d 7367 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7459, 73eqtrd 2764 . . . 4 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7540, 27addcld 11134 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
7639, 75mulcld 11135 . . . . . 6 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) ∈ ℂ)
7746gt0ne0d 11684 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ≠ 0)
7876, 41, 42, 77, 49divcan7d 11928 . . . . 5 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
7945gt0ne0d 11684 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
8013gt0ne0d 11684 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8139, 39, 75, 40, 79, 80divmuldivd 11941 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
8281eqcomd 2735 . . . . 5 (𝑁 ∈ ℕ → ((2 · (𝑁 + 1)) / (2 · 𝑁)) = ((2 / 2) · ((𝑁 + 1) / 𝑁)))
8339, 79dividd 11898 . . . . . . 7 (𝑁 ∈ ℕ → (2 / 2) = 1)
8483oveq1d 7364 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = (1 · ((𝑁 + 1) / 𝑁)))
8575, 40, 80divcld 11900 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
8685mullidd 11133 . . . . . 6 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8784, 86eqtrd 2764 . . . . 5 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8878, 82, 873eqtrd 2768 . . . 4 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((𝑁 + 1) / 𝑁))
8954, 74, 883eqtrd 2768 . . 3 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = ((𝑁 + 1) / 𝑁))
9089fveq2d 6826 . 2 (𝑁 ∈ ℕ → (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))) = (log‘((𝑁 + 1) / 𝑁)))
9138, 90breqtrd 5118 1 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  +crp 12893  seqcseq 13908  cexp 13968  abscabs 15141  cli 15391  logclog 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-ulm 26284  df-log 26463
This theorem is referenced by:  stirlinglem7  46071
  Copyright terms: Public domain W3C validator