Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem6 Structured version   Visualization version   GIF version

Theorem stirlinglem6 46000
Description: A series that converges to log((𝑁 + 1) / 𝑁). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem6.1 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
Assertion
Ref Expression
stirlinglem6 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Distinct variable group:   𝑗,𝑁
Allowed substitution hint:   𝐻(𝑗)

Proof of Theorem stirlinglem6
StepHypRef Expression
1 eqid 2740 . . 3 (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
2 eqid 2740 . . 3 (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) = (𝑗 ∈ ℕ ↦ (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))
3 eqid 2740 . . 3 (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)) + (((1 / ((2 · 𝑁) + 1))↑𝑗) / 𝑗)))
4 stirlinglem6.1 . . 3 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
5 eqid 2740 . . 3 (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)) = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
6 2re 12367 . . . . . . 7 2 ∈ ℝ
76a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 12300 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
97, 8remulcld 11320 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
10 0le2 12395 . . . . . . 7 0 ≤ 2
1110a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 2)
12 0red 11293 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ ℝ)
13 nngt0 12324 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
1412, 8, 13ltled 11438 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
157, 8, 11, 14mulge0d 11867 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
169, 15ge0p1rpd 13129 . . . 4 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
1716rpreccld 13109 . . 3 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
18 1red 11291 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
1918renegcld 11717 . . . . 5 (𝑁 ∈ ℕ → -1 ∈ ℝ)
2017rpred 13099 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
21 neg1lt0 12410 . . . . . 6 -1 < 0
2221a1i 11 . . . . 5 (𝑁 ∈ ℕ → -1 < 0)
2317rpgt0d 13102 . . . . 5 (𝑁 ∈ ℕ → 0 < (1 / ((2 · 𝑁) + 1)))
2419, 12, 20, 22, 23lttrd 11451 . . . 4 (𝑁 ∈ ℕ → -1 < (1 / ((2 · 𝑁) + 1)))
25 1rp 13061 . . . . . 6 1 ∈ ℝ+
2625a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℝ+)
27 1cnd 11285 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2827div1d 12062 . . . . . 6 (𝑁 ∈ ℕ → (1 / 1) = 1)
29 2rp 13062 . . . . . . . . 9 2 ∈ ℝ+
3029a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 13068 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3230, 31rpmulcld 13115 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3318, 32ltaddrp2d 13133 . . . . . 6 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
3428, 33eqbrtrd 5188 . . . . 5 (𝑁 ∈ ℕ → (1 / 1) < ((2 · 𝑁) + 1))
3526, 16, 34ltrec1d 13119 . . . 4 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) < 1)
3620, 18absltd 15478 . . . 4 (𝑁 ∈ ℕ → ((abs‘(1 / ((2 · 𝑁) + 1))) < 1 ↔ (-1 < (1 / ((2 · 𝑁) + 1)) ∧ (1 / ((2 · 𝑁) + 1)) < 1)))
3724, 35, 36mpbir2and 712 . . 3 (𝑁 ∈ ℕ → (abs‘(1 / ((2 · 𝑁) + 1))) < 1)
381, 2, 3, 4, 5, 17, 37stirlinglem5 45999 . 2 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))))
39 2cnd 12371 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℂ)
40 nncn 12301 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4139, 40mulcld 11310 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
4241, 27addcld 11309 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
439, 18readdcld 11319 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
44 2pos 12396 . . . . . . . . . . . 12 0 < 2
4544a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 2)
467, 8, 45, 13mulgt0d 11445 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < (2 · 𝑁))
479ltp1d 12225 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) < ((2 · 𝑁) + 1))
4812, 9, 43, 46, 47lttrd 11451 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4948gt0ne0d 11854 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
5042, 49dividd 12068 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) = 1)
5150eqcomd 2746 . . . . . 6 (𝑁 ∈ ℕ → 1 = (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)))
5251oveq1d 7463 . . . . 5 (𝑁 ∈ ℕ → (1 + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5351oveq1d 7463 . . . . 5 (𝑁 ∈ ℕ → (1 − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5452, 53oveq12d 7466 . . . 4 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))))
5542, 27, 42, 49divdird 12108 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))))
5655eqcomd 2746 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)))
5742, 27, 42, 49divsubdird 12109 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))))
5857eqcomd 2746 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1))) = ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)))
5956, 58oveq12d 7466 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))))
6041, 27, 27addassd 11312 . . . . . . . 8 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
61 1p1e2 12418 . . . . . . . . . 10 (1 + 1) = 2
6261a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 + 1) = 2)
6362oveq2d 7464 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + (1 + 1)) = ((2 · 𝑁) + 2))
6439mulridd 11307 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 1) = 2)
6564eqcomd 2746 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 = (2 · 1))
6665oveq2d 7464 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = ((2 · 𝑁) + (2 · 1)))
6739, 40, 27adddid 11314 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
6866, 67eqtr4d 2783 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 2) = (2 · (𝑁 + 1)))
6960, 63, 683eqtrd 2784 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) + 1) = (2 · (𝑁 + 1)))
7069oveq1d 7463 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) = ((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)))
7141, 27pncand 11648 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁))
7271oveq1d 7463 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1)) = ((2 · 𝑁) / ((2 · 𝑁) + 1)))
7370, 72oveq12d 7466 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) + 1) / ((2 · 𝑁) + 1)) / ((((2 · 𝑁) + 1) − 1) / ((2 · 𝑁) + 1))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7459, 73eqtrd 2780 . . . 4 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) + (1 / ((2 · 𝑁) + 1))) / ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) − (1 / ((2 · 𝑁) + 1)))) = (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))))
7540, 27addcld 11309 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
7639, 75mulcld 11310 . . . . . 6 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) ∈ ℂ)
7746gt0ne0d 11854 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ≠ 0)
7876, 41, 42, 77, 49divcan7d 12098 . . . . 5 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
7945gt0ne0d 11854 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
8013gt0ne0d 11854 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8139, 39, 75, 40, 79, 80divmuldivd 12111 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((2 · (𝑁 + 1)) / (2 · 𝑁)))
8281eqcomd 2746 . . . . 5 (𝑁 ∈ ℕ → ((2 · (𝑁 + 1)) / (2 · 𝑁)) = ((2 / 2) · ((𝑁 + 1) / 𝑁)))
8339, 79dividd 12068 . . . . . . 7 (𝑁 ∈ ℕ → (2 / 2) = 1)
8483oveq1d 7463 . . . . . 6 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = (1 · ((𝑁 + 1) / 𝑁)))
8575, 40, 80divcld 12070 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
8685mullidd 11308 . . . . . 6 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8784, 86eqtrd 2780 . . . . 5 (𝑁 ∈ ℕ → ((2 / 2) · ((𝑁 + 1) / 𝑁)) = ((𝑁 + 1) / 𝑁))
8878, 82, 873eqtrd 2784 . . . 4 (𝑁 ∈ ℕ → (((2 · (𝑁 + 1)) / ((2 · 𝑁) + 1)) / ((2 · 𝑁) / ((2 · 𝑁) + 1))) = ((𝑁 + 1) / 𝑁))
8954, 74, 883eqtrd 2784 . . 3 (𝑁 ∈ ℕ → ((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1)))) = ((𝑁 + 1) / 𝑁))
9089fveq2d 6924 . 2 (𝑁 ∈ ℕ → (log‘((1 + (1 / ((2 · 𝑁) + 1))) / (1 − (1 / ((2 · 𝑁) + 1))))) = (log‘((𝑁 + 1) / 𝑁)))
9138, 90breqtrd 5192 1 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  +crp 13057  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616
This theorem is referenced by:  stirlinglem7  46001
  Copyright terms: Public domain W3C validator