Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem19 Structured version   Visualization version   GIF version

Theorem knoppndvlem19 36518
Description: Lemma for knoppndv 36522. (Contributed by Asger C. Ipsen, 17-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem19.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
knoppndvlem19.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
knoppndvlem19.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem19.h (𝜑𝐻 ∈ ℝ)
knoppndvlem19.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem19 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Distinct variable groups:   𝜑,𝑚   𝑚,𝐽   𝑚,𝐻   𝑚,𝑁
Allowed substitution hints:   𝐴(𝑚)   𝐵(𝑚)

Proof of Theorem knoppndvlem19
StepHypRef Expression
1 knoppndvlem19.h . . . 4 (𝜑𝐻 ∈ ℝ)
2 2re 12260 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem19.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnred 12201 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
63, 5remulcld 11204 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
7 2pos 12289 . . . . . . . . 9 0 < 2
87a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
94nngt0d 12235 . . . . . . . 8 (𝜑 → 0 < 𝑁)
103, 5, 8, 9mulgt0d 11329 . . . . . . 7 (𝜑 → 0 < (2 · 𝑁))
1110gt0ne0d 11742 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
12 knoppndvlem19.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
1312nn0zd 12555 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
1413znegcld 12640 . . . . . 6 (𝜑 → -𝐽 ∈ ℤ)
156, 11, 14reexpclzd 14214 . . . . 5 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
163recnd 11202 . . . . . 6 (𝜑 → 2 ∈ ℂ)
175recnd 11202 . . . . . 6 (𝜑𝑁 ∈ ℂ)
1816, 17, 11mulne0bad 11833 . . . . 5 (𝜑 → 2 ≠ 0)
1915, 3, 18redivcld 12010 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
206, 14, 103jca 1128 . . . . . . 7 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
21 expgt0 14060 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
2220, 21syl 17 . . . . . 6 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
2315, 3, 22, 8divgt0d 12118 . . . . 5 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
2423gt0ne0d 11742 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
251, 19, 24redivcld 12010 . . 3 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ)
2625flcld 13760 . 2 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℤ)
27 knoppndvlem19.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2827a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))
29 id 22 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
3029oveq2d 7403 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3128, 30eqtrd 2764 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3231breq1d 5117 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐴𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻))
33 knoppndvlem19.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3433a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
3529oveq1d 7402 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝑚 + 1) = ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
3635oveq2d 7403 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3734, 36eqtrd 2764 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3837breq2d 5119 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐻𝐵𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
3932, 38anbi12d 632 . . 3 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4039adantl 481 . 2 ((𝜑𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4126zred 12638 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ)
42 0red 11177 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4342, 19, 23ltled 11322 . . . . 5 (𝜑 → 0 ≤ (((2 · 𝑁)↑-𝐽) / 2))
44 flle 13761 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4525, 44syl 17 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4641, 25, 19, 43, 45lemul2ad 12123 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
471recnd 11202 . . . . 5 (𝜑𝐻 ∈ ℂ)
4819recnd 11202 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4947, 48, 24divcan2d 11960 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) = 𝐻)
5046, 49breqtrd 5133 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻)
5149eqcomd 2735 . . . 4 (𝜑𝐻 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
52 peano2re 11347 . . . . . 6 ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
5341, 52syl 17 . . . . 5 (𝜑 → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
54 fllep1 13763 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5525, 54syl 17 . . . . 5 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5625, 53, 19, 43, 55lemul2ad 12123 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5751, 56eqbrtrd 5129 . . 3 (𝜑𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5850, 57jca 511 . 2 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
5926, 40, 58rspcedvd 3590 1 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cfl 13752  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-seq 13967  df-exp 14027
This theorem is referenced by:  knoppndvlem21  36520
  Copyright terms: Public domain W3C validator