Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem19 Structured version   Visualization version   GIF version

Theorem knoppndvlem19 34801
Description: Lemma for knoppndv 34805. (Contributed by Asger C. Ipsen, 17-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem19.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
knoppndvlem19.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
knoppndvlem19.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem19.h (𝜑𝐻 ∈ ℝ)
knoppndvlem19.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem19 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Distinct variable groups:   𝜑,𝑚   𝑚,𝐽   𝑚,𝐻   𝑚,𝑁
Allowed substitution hints:   𝐴(𝑚)   𝐵(𝑚)

Proof of Theorem knoppndvlem19
StepHypRef Expression
1 knoppndvlem19.h . . . 4 (𝜑𝐻 ∈ ℝ)
2 2re 12140 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem19.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnred 12081 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
63, 5remulcld 11098 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
7 2pos 12169 . . . . . . . . 9 0 < 2
87a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
94nngt0d 12115 . . . . . . . 8 (𝜑 → 0 < 𝑁)
103, 5, 8, 9mulgt0d 11223 . . . . . . 7 (𝜑 → 0 < (2 · 𝑁))
1110gt0ne0d 11632 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
12 knoppndvlem19.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
1312nn0zd 12517 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
1413znegcld 12521 . . . . . 6 (𝜑 → -𝐽 ∈ ℤ)
156, 11, 14reexpclzd 14057 . . . . 5 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
163recnd 11096 . . . . . 6 (𝜑 → 2 ∈ ℂ)
175recnd 11096 . . . . . 6 (𝜑𝑁 ∈ ℂ)
1816, 17, 11mulne0bad 11723 . . . . 5 (𝜑 → 2 ≠ 0)
1915, 3, 18redivcld 11896 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
206, 14, 103jca 1127 . . . . . . 7 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
21 expgt0 13909 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
2220, 21syl 17 . . . . . 6 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
2315, 3, 22, 8divgt0d 12003 . . . . 5 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
2423gt0ne0d 11632 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
251, 19, 24redivcld 11896 . . 3 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ)
2625flcld 13611 . 2 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℤ)
27 knoppndvlem19.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2827a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))
29 id 22 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
3029oveq2d 7345 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3128, 30eqtrd 2776 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3231breq1d 5099 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐴𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻))
33 knoppndvlem19.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3433a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
3529oveq1d 7344 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝑚 + 1) = ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
3635oveq2d 7345 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3734, 36eqtrd 2776 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3837breq2d 5101 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐻𝐵𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
3932, 38anbi12d 631 . . 3 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4039adantl 482 . 2 ((𝜑𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4126zred 12519 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ)
42 0red 11071 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4342, 19, 23ltled 11216 . . . . 5 (𝜑 → 0 ≤ (((2 · 𝑁)↑-𝐽) / 2))
44 flle 13612 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4525, 44syl 17 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4641, 25, 19, 43, 45lemul2ad 12008 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
471recnd 11096 . . . . 5 (𝜑𝐻 ∈ ℂ)
4819recnd 11096 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4947, 48, 24divcan2d 11846 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) = 𝐻)
5046, 49breqtrd 5115 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻)
5149eqcomd 2742 . . . 4 (𝜑𝐻 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
52 peano2re 11241 . . . . . 6 ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
5341, 52syl 17 . . . . 5 (𝜑 → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
54 fllep1 13614 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5525, 54syl 17 . . . . 5 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5625, 53, 19, 43, 55lemul2ad 12008 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5751, 56eqbrtrd 5111 . . 3 (𝜑𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5850, 57jca 512 . 2 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
5926, 40, 58rspcedvd 3572 1 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wrex 3070   class class class wbr 5089  cfv 6473  (class class class)co 7329  cr 10963  0cc0 10964  1c1 10965   + caddc 10967   · cmul 10969   < clt 11102  cle 11103  -cneg 11299   / cdiv 11725  cn 12066  2c2 12121  0cn0 12326  cz 12412  cfl 13603  cexp 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-sup 9291  df-inf 9292  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-fl 13605  df-seq 13815  df-exp 13876
This theorem is referenced by:  knoppndvlem21  34803
  Copyright terms: Public domain W3C validator