Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem19 Structured version   Visualization version   GIF version

Theorem knoppndvlem19 34637
Description: Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 17-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem19.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
knoppndvlem19.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
knoppndvlem19.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem19.h (𝜑𝐻 ∈ ℝ)
knoppndvlem19.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem19 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Distinct variable groups:   𝜑,𝑚   𝑚,𝐽   𝑚,𝐻   𝑚,𝑁
Allowed substitution hints:   𝐴(𝑚)   𝐵(𝑚)

Proof of Theorem knoppndvlem19
StepHypRef Expression
1 knoppndvlem19.h . . . 4 (𝜑𝐻 ∈ ℝ)
2 2re 11977 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem19.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnred 11918 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
63, 5remulcld 10936 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
7 2pos 12006 . . . . . . . . 9 0 < 2
87a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
94nngt0d 11952 . . . . . . . 8 (𝜑 → 0 < 𝑁)
103, 5, 8, 9mulgt0d 11060 . . . . . . 7 (𝜑 → 0 < (2 · 𝑁))
1110gt0ne0d 11469 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
12 knoppndvlem19.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
1312nn0zd 12353 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
1413znegcld 12357 . . . . . 6 (𝜑 → -𝐽 ∈ ℤ)
156, 11, 14reexpclzd 13892 . . . . 5 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
163recnd 10934 . . . . . 6 (𝜑 → 2 ∈ ℂ)
175recnd 10934 . . . . . 6 (𝜑𝑁 ∈ ℂ)
1816, 17, 11mulne0bad 11560 . . . . 5 (𝜑 → 2 ≠ 0)
1915, 3, 18redivcld 11733 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
206, 14, 103jca 1126 . . . . . . 7 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
21 expgt0 13744 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
2220, 21syl 17 . . . . . 6 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
2315, 3, 22, 8divgt0d 11840 . . . . 5 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
2423gt0ne0d 11469 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
251, 19, 24redivcld 11733 . . 3 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ)
2625flcld 13446 . 2 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℤ)
27 knoppndvlem19.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2827a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))
29 id 22 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
3029oveq2d 7271 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3128, 30eqtrd 2778 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3231breq1d 5080 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐴𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻))
33 knoppndvlem19.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3433a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
3529oveq1d 7270 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝑚 + 1) = ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
3635oveq2d 7271 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3734, 36eqtrd 2778 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3837breq2d 5082 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐻𝐵𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
3932, 38anbi12d 630 . . 3 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4039adantl 481 . 2 ((𝜑𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4126zred 12355 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ)
42 0red 10909 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4342, 19, 23ltled 11053 . . . . 5 (𝜑 → 0 ≤ (((2 · 𝑁)↑-𝐽) / 2))
44 flle 13447 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4525, 44syl 17 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4641, 25, 19, 43, 45lemul2ad 11845 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
471recnd 10934 . . . . 5 (𝜑𝐻 ∈ ℂ)
4819recnd 10934 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4947, 48, 24divcan2d 11683 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) = 𝐻)
5046, 49breqtrd 5096 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻)
5149eqcomd 2744 . . . 4 (𝜑𝐻 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
52 peano2re 11078 . . . . . 6 ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
5341, 52syl 17 . . . . 5 (𝜑 → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
54 fllep1 13449 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5525, 54syl 17 . . . . 5 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5625, 53, 19, 43, 55lemul2ad 11845 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5751, 56eqbrtrd 5092 . . 3 (𝜑𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5850, 57jca 511 . 2 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
5926, 40, 58rspcedvd 3555 1 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cfl 13438  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711
This theorem is referenced by:  knoppndvlem21  34639
  Copyright terms: Public domain W3C validator