Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem19 Structured version   Visualization version   GIF version

Theorem knoppndvlem19 34993
Description: Lemma for knoppndv 34997. (Contributed by Asger C. Ipsen, 17-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem19.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
knoppndvlem19.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
knoppndvlem19.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem19.h (𝜑𝐻 ∈ ℝ)
knoppndvlem19.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem19 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Distinct variable groups:   𝜑,𝑚   𝑚,𝐽   𝑚,𝐻   𝑚,𝑁
Allowed substitution hints:   𝐴(𝑚)   𝐵(𝑚)

Proof of Theorem knoppndvlem19
StepHypRef Expression
1 knoppndvlem19.h . . . 4 (𝜑𝐻 ∈ ℝ)
2 2re 12227 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem19.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnred 12168 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
63, 5remulcld 11185 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
7 2pos 12256 . . . . . . . . 9 0 < 2
87a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
94nngt0d 12202 . . . . . . . 8 (𝜑 → 0 < 𝑁)
103, 5, 8, 9mulgt0d 11310 . . . . . . 7 (𝜑 → 0 < (2 · 𝑁))
1110gt0ne0d 11719 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
12 knoppndvlem19.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
1312nn0zd 12525 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
1413znegcld 12609 . . . . . 6 (𝜑 → -𝐽 ∈ ℤ)
156, 11, 14reexpclzd 14152 . . . . 5 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
163recnd 11183 . . . . . 6 (𝜑 → 2 ∈ ℂ)
175recnd 11183 . . . . . 6 (𝜑𝑁 ∈ ℂ)
1816, 17, 11mulne0bad 11810 . . . . 5 (𝜑 → 2 ≠ 0)
1915, 3, 18redivcld 11983 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
206, 14, 103jca 1128 . . . . . . 7 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
21 expgt0 14001 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
2220, 21syl 17 . . . . . 6 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
2315, 3, 22, 8divgt0d 12090 . . . . 5 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
2423gt0ne0d 11719 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
251, 19, 24redivcld 11983 . . 3 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ)
2625flcld 13703 . 2 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℤ)
27 knoppndvlem19.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2827a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))
29 id 22 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
3029oveq2d 7373 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3128, 30eqtrd 2776 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3231breq1d 5115 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐴𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻))
33 knoppndvlem19.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3433a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
3529oveq1d 7372 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝑚 + 1) = ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
3635oveq2d 7373 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3734, 36eqtrd 2776 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3837breq2d 5117 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐻𝐵𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
3932, 38anbi12d 631 . . 3 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4039adantl 482 . 2 ((𝜑𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4126zred 12607 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ)
42 0red 11158 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4342, 19, 23ltled 11303 . . . . 5 (𝜑 → 0 ≤ (((2 · 𝑁)↑-𝐽) / 2))
44 flle 13704 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4525, 44syl 17 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4641, 25, 19, 43, 45lemul2ad 12095 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
471recnd 11183 . . . . 5 (𝜑𝐻 ∈ ℂ)
4819recnd 11183 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4947, 48, 24divcan2d 11933 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) = 𝐻)
5046, 49breqtrd 5131 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻)
5149eqcomd 2742 . . . 4 (𝜑𝐻 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
52 peano2re 11328 . . . . . 6 ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
5341, 52syl 17 . . . . 5 (𝜑 → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
54 fllep1 13706 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5525, 54syl 17 . . . . 5 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5625, 53, 19, 43, 55lemul2ad 12095 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5751, 56eqbrtrd 5127 . . 3 (𝜑𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5850, 57jca 512 . 2 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
5926, 40, 58rspcedvd 3583 1 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cfl 13695  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-seq 13907  df-exp 13968
This theorem is referenced by:  knoppndvlem21  34995
  Copyright terms: Public domain W3C validator