Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem19 Structured version   Visualization version   GIF version

Theorem knoppndvlem19 33982
Description: Lemma for knoppndv 33986. (Contributed by Asger C. Ipsen, 17-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem19.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
knoppndvlem19.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
knoppndvlem19.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem19.h (𝜑𝐻 ∈ ℝ)
knoppndvlem19.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem19 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Distinct variable groups:   𝜑,𝑚   𝑚,𝐽   𝑚,𝐻   𝑚,𝑁
Allowed substitution hints:   𝐴(𝑚)   𝐵(𝑚)

Proof of Theorem knoppndvlem19
StepHypRef Expression
1 knoppndvlem19.h . . . 4 (𝜑𝐻 ∈ ℝ)
2 2re 11699 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem19.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnred 11640 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
63, 5remulcld 10660 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
7 2pos 11728 . . . . . . . . 9 0 < 2
87a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
94nngt0d 11674 . . . . . . . 8 (𝜑 → 0 < 𝑁)
103, 5, 8, 9mulgt0d 10784 . . . . . . 7 (𝜑 → 0 < (2 · 𝑁))
1110gt0ne0d 11193 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
12 knoppndvlem19.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
1312nn0zd 12073 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
1413znegcld 12077 . . . . . 6 (𝜑 → -𝐽 ∈ ℤ)
156, 11, 14reexpclzd 13606 . . . . 5 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
163recnd 10658 . . . . . 6 (𝜑 → 2 ∈ ℂ)
175recnd 10658 . . . . . 6 (𝜑𝑁 ∈ ℂ)
1816, 17, 11mulne0bad 11284 . . . . 5 (𝜑 → 2 ≠ 0)
1915, 3, 18redivcld 11457 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
206, 14, 103jca 1125 . . . . . . 7 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
21 expgt0 13458 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
2220, 21syl 17 . . . . . 6 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
2315, 3, 22, 8divgt0d 11564 . . . . 5 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
2423gt0ne0d 11193 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
251, 19, 24redivcld 11457 . . 3 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ)
2625flcld 13163 . 2 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℤ)
27 knoppndvlem19.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2827a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))
29 id 22 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
3029oveq2d 7151 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3128, 30eqtrd 2833 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))))
3231breq1d 5040 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐴𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻))
33 knoppndvlem19.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3433a1i 11 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
3529oveq1d 7150 . . . . . . 7 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝑚 + 1) = ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
3635oveq2d 7151 . . . . . 6 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3734, 36eqtrd 2833 . . . . 5 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
3837breq2d 5042 . . . 4 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → (𝐻𝐵𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
3932, 38anbi12d 633 . . 3 (𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4039adantl 485 . 2 ((𝜑𝑚 = (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) → ((𝐴𝐻𝐻𝐵) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))))
4126zred 12075 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ)
42 0red 10633 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4342, 19, 23ltled 10777 . . . . 5 (𝜑 → 0 ≤ (((2 · 𝑁)↑-𝐽) / 2))
44 flle 13164 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4525, 44syl 17 . . . . 5 (𝜑 → (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))
4641, 25, 19, 43, 45lemul2ad 11569 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
471recnd 10658 . . . . 5 (𝜑𝐻 ∈ ℂ)
4819recnd 10658 . . . . 5 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4947, 48, 24divcan2d 11407 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) = 𝐻)
5046, 49breqtrd 5056 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻)
5149eqcomd 2804 . . . 4 (𝜑𝐻 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))))
52 peano2re 10802 . . . . . 6 ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ∈ ℝ → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
5341, 52syl 17 . . . . 5 (𝜑 → ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1) ∈ ℝ)
54 fllep1 13166 . . . . . 6 ((𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℝ → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5525, 54syl 17 . . . . 5 (𝜑 → (𝐻 / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))
5625, 53, 19, 43, 55lemul2ad 11569 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5751, 56eqbrtrd 5052 . . 3 (𝜑𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1)))
5850, 57jca 515 . 2 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2)))) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((⌊‘(𝐻 / (((2 · 𝑁)↑-𝐽) / 2))) + 1))))
5926, 40, 58rspcedvd 3574 1 (𝜑 → ∃𝑚 ∈ ℤ (𝐴𝐻𝐻𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cfl 13155  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426
This theorem is referenced by:  knoppndvlem21  33984
  Copyright terms: Public domain W3C validator