Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem14 Structured version   Visualization version   GIF version

Theorem knoppndvlem14 36527
Description: Lemma for knoppndv 36536. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 7-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem14.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem14.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem14.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem14.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem14.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem14.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem14.m (𝜑𝑀 ∈ ℤ)
knoppndvlem14.n (𝜑𝑁 ∈ ℕ)
knoppndvlem14.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem14 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑦   𝑥,𝐴,𝑖   𝐵,𝑖,𝑛,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐽,𝑛,𝑦   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥,𝑖)   𝐹(𝑥,𝑦,𝑖,𝑛)   𝐽(𝑥)   𝑀(𝑥,𝑦,𝑖,𝑛)

Proof of Theorem knoppndvlem14
StepHypRef Expression
1 knoppndvlem14.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem14.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem14.b . . . . . . . 8 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
43a1i 11 . . . . . . 7 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
5 knoppndvlem14.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
6 knoppndvlem14.j . . . . . . . . 9 (𝜑𝐽 ∈ ℕ0)
76nn0zd 12641 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
8 knoppndvlem14.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98peano2zd 12727 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
105, 7, 9knoppndvlem1 36514 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
114, 10eqeltrd 2840 . . . . . 6 (𝜑𝐵 ∈ ℝ)
12 knoppndvlem14.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
1312knoppndvlem3 36516 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1413simpld 494 . . . . . 6 (𝜑𝐶 ∈ ℝ)
151, 2, 11, 14, 5knoppndvlem5 36518 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) ∈ ℝ)
16 knoppndvlem14.a . . . . . . . 8 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
1716a1i 11 . . . . . . 7 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
185, 7, 8knoppndvlem1 36514 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
1917, 18eqeltrd 2840 . . . . . 6 (𝜑𝐴 ∈ ℝ)
201, 2, 19, 14, 5knoppndvlem5 36518 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) ∈ ℝ)
2115, 20resubcld 11692 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) ∈ ℝ)
2221recnd 11290 . . 3 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) ∈ ℂ)
2322abscld 15476 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ∈ ℝ)
2411, 19resubcld 11692 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
2524recnd 11290 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
2625abscld 15476 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
27 fzfid 14015 . . . 4 (𝜑 → (0...(𝐽 − 1)) ∈ Fin)
28 2re 12341 . . . . . . . . 9 2 ∈ ℝ
2928a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
30 nnre 12274 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
315, 30syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3229, 31remulcld 11292 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ)
3314recnd 11290 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
3433abscld 15476 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
3532, 34remulcld 11292 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3635adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
37 elfznn0 13661 . . . . . 6 (𝑖 ∈ (0...(𝐽 − 1)) → 𝑖 ∈ ℕ0)
3837adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑖 ∈ ℕ0)
3936, 38reexpcld 14204 . . . 4 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4027, 39fsumrecl 15771 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4126, 40remulcld 11292 . 2 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
4234, 6reexpcld 14204 . . . 4 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
43 2ne0 12371 . . . . 5 2 ≠ 0
4443a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
4542, 29, 44redivcld 12096 . . 3 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
46 1red 11263 . . . 4 (𝜑 → 1 ∈ ℝ)
4735, 46resubcld 11692 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
48 0red 11265 . . . . . 6 (𝜑 → 0 ∈ ℝ)
49 0lt1 11786 . . . . . . . 8 0 < 1
5049a1i 11 . . . . . . 7 (𝜑 → 0 < 1)
51 knoppndvlem14.1 . . . . . . . . 9 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
5212, 5, 51knoppndvlem12 36525 . . . . . . . 8 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
5352simprd 495 . . . . . . 7 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
5448, 46, 47, 50, 53lttrd 11423 . . . . . 6 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
5548, 54jca 511 . . . . 5 (𝜑 → (0 ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
56 ltne 11359 . . . . 5 ((0 ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
5755, 56syl 17 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
5846, 47, 57redivcld 12096 . . 3 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
5945, 58remulcld 11292 . 2 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
601, 2, 19, 11, 12, 6, 5knoppndvlem11 36524 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
614, 17oveq12d 7450 . . . . . . 7 (𝜑 → (𝐵𝐴) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
6229recnd 11290 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
6331recnd 11290 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
64 nnge1 12295 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
655, 64syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑁)
6648, 46, 31, 50, 65ltletrd 11422 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
6748, 66jca 511 . . . . . . . . . . . . . . 15 (𝜑 → (0 ∈ ℝ ∧ 0 < 𝑁))
68 ltne 11359 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0)
6967, 68syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ≠ 0)
7062, 63, 44, 69mulne0d 11916 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ≠ 0)
717znegcld 12726 . . . . . . . . . . . . 13 (𝜑 → -𝐽 ∈ ℤ)
7232, 70, 71reexpclzd 14289 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
7372, 29, 44redivcld 12096 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
7473recnd 11290 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
759zcnd 12725 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℂ)
768zcnd 12725 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
7774, 75, 76subdid 11720 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
7877eqcomd 2742 . . . . . . . 8 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)))
79 1cnd 11257 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8076, 79pncan2d 11623 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 𝑀) = 1)
8180oveq2d 7448 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · 1))
8274mulridd 11279 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 1) = (((2 · 𝑁)↑-𝐽) / 2))
8378, 81, 823eqtrd 2780 . . . . . . 7 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = (((2 · 𝑁)↑-𝐽) / 2))
8461, 83eqtrd 2776 . . . . . 6 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
8584fveq2d 6909 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((2 · 𝑁)↑-𝐽) / 2)))
8672recnd 11290 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
8786, 62, 44absdivd 15495 . . . . . 6 (𝜑 → (abs‘(((2 · 𝑁)↑-𝐽) / 2)) = ((abs‘((2 · 𝑁)↑-𝐽)) / (abs‘2)))
8862, 63mulcld 11282 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
8988, 70, 713jca 1128 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0 ∧ -𝐽 ∈ ℤ))
90 absexpz 15345 . . . . . . . . 9 (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0 ∧ -𝐽 ∈ ℤ) → (abs‘((2 · 𝑁)↑-𝐽)) = ((abs‘(2 · 𝑁))↑-𝐽))
9189, 90syl 17 . . . . . . . 8 (𝜑 → (abs‘((2 · 𝑁)↑-𝐽)) = ((abs‘(2 · 𝑁))↑-𝐽))
9262, 63absmuld 15494 . . . . . . . . . 10 (𝜑 → (abs‘(2 · 𝑁)) = ((abs‘2) · (abs‘𝑁)))
93 0le2 12369 . . . . . . . . . . . . . 14 0 ≤ 2
9428, 93pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 ≤ 2)
95 absid 15336 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
9694, 95ax-mp 5 . . . . . . . . . . . 12 (abs‘2) = 2
9796a1i 11 . . . . . . . . . . 11 (𝜑 → (abs‘2) = 2)
9848, 31, 66ltled 11410 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑁)
9931, 98absidd 15462 . . . . . . . . . . 11 (𝜑 → (abs‘𝑁) = 𝑁)
10097, 99oveq12d 7450 . . . . . . . . . 10 (𝜑 → ((abs‘2) · (abs‘𝑁)) = (2 · 𝑁))
10192, 100eqtrd 2776 . . . . . . . . 9 (𝜑 → (abs‘(2 · 𝑁)) = (2 · 𝑁))
102101oveq1d 7447 . . . . . . . 8 (𝜑 → ((abs‘(2 · 𝑁))↑-𝐽) = ((2 · 𝑁)↑-𝐽))
10391, 102eqtrd 2776 . . . . . . 7 (𝜑 → (abs‘((2 · 𝑁)↑-𝐽)) = ((2 · 𝑁)↑-𝐽))
104103, 97oveq12d 7450 . . . . . 6 (𝜑 → ((abs‘((2 · 𝑁)↑-𝐽)) / (abs‘2)) = (((2 · 𝑁)↑-𝐽) / 2))
10587, 104eqtrd 2776 . . . . 5 (𝜑 → (abs‘(((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁)↑-𝐽) / 2))
10685, 105eqtrd 2776 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (((2 · 𝑁)↑-𝐽) / 2))
10735recnd 11290 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℂ)
10852simpld 494 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
109107, 108, 6geoser 15904 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) = ((1 − (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / (1 − ((2 · 𝑁) · (abs‘𝐶)))))
110107, 6expcld 14187 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℂ)
111108necomd 2995 . . . . . 6 (𝜑 → 1 ≠ ((2 · 𝑁) · (abs‘𝐶)))
11279, 110, 79, 107, 111div2subd 12094 . . . . 5 (𝜑 → ((1 − (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / (1 − ((2 · 𝑁) · (abs‘𝐶)))) = (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
113109, 112eqtrd 2776 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) = (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
114106, 113oveq12d 7450 . . 3 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
115113, 40eqeltrrd 2841 . . . . 5 (𝜑 → (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
11635, 6reexpcld 14204 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℝ)
117116, 47, 57redivcld 12096 . . . . 5 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
118 2rp 13040 . . . . . . 7 2 ∈ ℝ+
119118a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ+)
120119rpgt0d 13081 . . . . . . . . . 10 (𝜑 → 0 < 2)
12129, 31, 120, 66mulgt0d 11417 . . . . . . . . 9 (𝜑 → 0 < (2 · 𝑁))
12232, 71, 1213jca 1128 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
123 expgt0 14137 . . . . . . . 8 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
124122, 123syl 17 . . . . . . 7 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
12548, 72, 124ltled 11410 . . . . . 6 (𝜑 → 0 ≤ ((2 · 𝑁)↑-𝐽))
12672, 119, 125divge0d 13118 . . . . 5 (𝜑 → 0 ≤ (((2 · 𝑁)↑-𝐽) / 2))
127116, 46resubcld 11692 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) ∈ ℝ)
12847, 54elrpd 13075 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+)
129116lem1d 12202 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
130127, 116, 128, 129lediv1dd 13136 . . . . 5 (𝜑 → (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
131115, 117, 73, 126, 130lemul2ad 12209 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
13247recnd 11290 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℂ)
133110, 132, 57divrecd 12047 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
134133oveq2d 7448 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
13558recnd 11290 . . . . . . 7 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℂ)
13674, 110, 135mulassd 11285 . . . . . 6 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
137136eqcomd 2742 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
13886, 110, 62, 44div23d 12081 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2) = ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)))
139138eqcomd 2742 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2))
14088, 70jca 511 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
14134recnd 11290 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐶) ∈ ℂ)
14212, 5, 51knoppndvlem13 36526 . . . . . . . . . . . . . 14 (𝜑𝐶 ≠ 0)
14333, 142absne0d 15487 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐶) ≠ 0)
144141, 143jca 511 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0))
145140, 144, 73jca 1128 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ))
146 mulexpz 14144 . . . . . . . . . . 11 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ) → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
147145, 146syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
148147oveq2d 7448 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))))
14988, 6expcld 14187 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
15042recnd 11290 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℂ)
15186, 149, 150mulassd 11285 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))))
152151eqcomd 2742 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))) = ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)))
153140, 71, 7jca32 515 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (-𝐽 ∈ ℤ ∧ 𝐽 ∈ ℤ)))
154 expaddz 14148 . . . . . . . . . . . . . 14 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (-𝐽 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)))
155153, 154syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)))
156155eqcomd 2742 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) = ((2 · 𝑁)↑(-𝐽 + 𝐽)))
15771zcnd 12725 . . . . . . . . . . . . . . 15 (𝜑 → -𝐽 ∈ ℂ)
1586nn0cnd 12591 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℂ)
159157, 158addcomd 11464 . . . . . . . . . . . . . 14 (𝜑 → (-𝐽 + 𝐽) = (𝐽 + -𝐽))
160158negidd 11611 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + -𝐽) = 0)
161159, 160eqtrd 2776 . . . . . . . . . . . . 13 (𝜑 → (-𝐽 + 𝐽) = 0)
162161oveq2d 7448 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = ((2 · 𝑁)↑0))
16388exp0d 14181 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑0) = 1)
164156, 162, 1633eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) = 1)
165164oveq1d 7447 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = (1 · ((abs‘𝐶)↑𝐽)))
166150mullidd 11280 . . . . . . . . . 10 (𝜑 → (1 · ((abs‘𝐶)↑𝐽)) = ((abs‘𝐶)↑𝐽))
167165, 166eqtrd 2776 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = ((abs‘𝐶)↑𝐽))
168148, 152, 1673eqtrd 2780 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = ((abs‘𝐶)↑𝐽))
169168oveq1d 7447 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2) = (((abs‘𝐶)↑𝐽) / 2))
170139, 169eqtrd 2776 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = (((abs‘𝐶)↑𝐽) / 2))
171170oveq1d 7447 . . . . 5 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
172134, 137, 1713eqtrd 2780 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
173131, 172breqtrd 5168 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
174114, 173eqbrtrd 5164 . 2 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
17523, 41, 59, 60, 174letrd 11419 1 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  cn 12267  2c2 12322  0cn0 12528  cz 12615  +crp 13035  (,)cioo 13388  ...cfz 13548  cfl 13831  cexp 14103  abscabs 15274  Σcsu 15723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-ioo 13392  df-ico 13394  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724
This theorem is referenced by:  knoppndvlem15  36528
  Copyright terms: Public domain W3C validator