Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem14 Structured version   Visualization version   GIF version

Theorem knoppndvlem14 33972
Description: Lemma for knoppndv 33981. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 7-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem14.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem14.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem14.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem14.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem14.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem14.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem14.m (𝜑𝑀 ∈ ℤ)
knoppndvlem14.n (𝜑𝑁 ∈ ℕ)
knoppndvlem14.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem14 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑦   𝑥,𝐴,𝑖   𝐵,𝑖,𝑛,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐽,𝑛,𝑦   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥,𝑖)   𝐹(𝑥,𝑦,𝑖,𝑛)   𝐽(𝑥)   𝑀(𝑥,𝑦,𝑖,𝑛)

Proof of Theorem knoppndvlem14
StepHypRef Expression
1 knoppndvlem14.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem14.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem14.b . . . . . . . 8 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
43a1i 11 . . . . . . 7 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
5 knoppndvlem14.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
6 knoppndvlem14.j . . . . . . . . 9 (𝜑𝐽 ∈ ℕ0)
76nn0zd 12077 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
8 knoppndvlem14.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98peano2zd 12082 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
105, 7, 9knoppndvlem1 33959 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
114, 10eqeltrd 2893 . . . . . 6 (𝜑𝐵 ∈ ℝ)
12 knoppndvlem14.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
1312knoppndvlem3 33961 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1413simpld 498 . . . . . 6 (𝜑𝐶 ∈ ℝ)
151, 2, 11, 14, 5knoppndvlem5 33963 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) ∈ ℝ)
16 knoppndvlem14.a . . . . . . . 8 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
1716a1i 11 . . . . . . 7 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
185, 7, 8knoppndvlem1 33959 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
1917, 18eqeltrd 2893 . . . . . 6 (𝜑𝐴 ∈ ℝ)
201, 2, 19, 14, 5knoppndvlem5 33963 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) ∈ ℝ)
2115, 20resubcld 11061 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) ∈ ℝ)
2221recnd 10662 . . 3 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) ∈ ℂ)
2322abscld 14791 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ∈ ℝ)
2411, 19resubcld 11061 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
2524recnd 10662 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
2625abscld 14791 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
27 fzfid 13340 . . . 4 (𝜑 → (0...(𝐽 − 1)) ∈ Fin)
28 2re 11703 . . . . . . . . 9 2 ∈ ℝ
2928a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
30 nnre 11636 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
315, 30syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3229, 31remulcld 10664 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ)
3314recnd 10662 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
3433abscld 14791 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
3532, 34remulcld 10664 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3635adantr 484 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
37 elfznn0 12999 . . . . . 6 (𝑖 ∈ (0...(𝐽 − 1)) → 𝑖 ∈ ℕ0)
3837adantl 485 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑖 ∈ ℕ0)
3936, 38reexpcld 13527 . . . 4 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4027, 39fsumrecl 15086 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4126, 40remulcld 10664 . 2 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
4234, 6reexpcld 13527 . . . 4 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
43 2ne0 11733 . . . . 5 2 ≠ 0
4443a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
4542, 29, 44redivcld 11461 . . 3 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
46 1red 10635 . . . 4 (𝜑 → 1 ∈ ℝ)
4735, 46resubcld 11061 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
48 0red 10637 . . . . . 6 (𝜑 → 0 ∈ ℝ)
49 0lt1 11155 . . . . . . . 8 0 < 1
5049a1i 11 . . . . . . 7 (𝜑 → 0 < 1)
51 knoppndvlem14.1 . . . . . . . . 9 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
5212, 5, 51knoppndvlem12 33970 . . . . . . . 8 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
5352simprd 499 . . . . . . 7 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
5448, 46, 47, 50, 53lttrd 10794 . . . . . 6 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
5548, 54jca 515 . . . . 5 (𝜑 → (0 ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
56 ltne 10730 . . . . 5 ((0 ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
5755, 56syl 17 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
5846, 47, 57redivcld 11461 . . 3 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
5945, 58remulcld 10664 . 2 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
601, 2, 19, 11, 12, 6, 5knoppndvlem11 33969 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
614, 17oveq12d 7157 . . . . . . 7 (𝜑 → (𝐵𝐴) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
6229recnd 10662 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
6331recnd 10662 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
64 nnge1 11657 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
655, 64syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑁)
6648, 46, 31, 50, 65ltletrd 10793 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
6748, 66jca 515 . . . . . . . . . . . . . . 15 (𝜑 → (0 ∈ ℝ ∧ 0 < 𝑁))
68 ltne 10730 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0)
6967, 68syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ≠ 0)
7062, 63, 44, 69mulne0d 11285 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ≠ 0)
717znegcld 12081 . . . . . . . . . . . . 13 (𝜑 → -𝐽 ∈ ℤ)
7232, 70, 71reexpclzd 13610 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
7372, 29, 44redivcld 11461 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
7473recnd 10662 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
759zcnd 12080 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℂ)
768zcnd 12080 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
7774, 75, 76subdid 11089 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
7877eqcomd 2807 . . . . . . . 8 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)))
79 1cnd 10629 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8076, 79pncan2d 10992 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 𝑀) = 1)
8180oveq2d 7155 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · 1))
8274mulid1d 10651 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 1) = (((2 · 𝑁)↑-𝐽) / 2))
8378, 81, 823eqtrd 2840 . . . . . . 7 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = (((2 · 𝑁)↑-𝐽) / 2))
8461, 83eqtrd 2836 . . . . . 6 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
8584fveq2d 6653 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((2 · 𝑁)↑-𝐽) / 2)))
8672recnd 10662 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
8786, 62, 44absdivd 14810 . . . . . 6 (𝜑 → (abs‘(((2 · 𝑁)↑-𝐽) / 2)) = ((abs‘((2 · 𝑁)↑-𝐽)) / (abs‘2)))
8862, 63mulcld 10654 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
8988, 70, 713jca 1125 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0 ∧ -𝐽 ∈ ℤ))
90 absexpz 14660 . . . . . . . . 9 (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0 ∧ -𝐽 ∈ ℤ) → (abs‘((2 · 𝑁)↑-𝐽)) = ((abs‘(2 · 𝑁))↑-𝐽))
9189, 90syl 17 . . . . . . . 8 (𝜑 → (abs‘((2 · 𝑁)↑-𝐽)) = ((abs‘(2 · 𝑁))↑-𝐽))
9262, 63absmuld 14809 . . . . . . . . . 10 (𝜑 → (abs‘(2 · 𝑁)) = ((abs‘2) · (abs‘𝑁)))
93 0le2 11731 . . . . . . . . . . . . . 14 0 ≤ 2
9428, 93pm3.2i 474 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 ≤ 2)
95 absid 14651 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
9694, 95ax-mp 5 . . . . . . . . . . . 12 (abs‘2) = 2
9796a1i 11 . . . . . . . . . . 11 (𝜑 → (abs‘2) = 2)
9848, 31, 66ltled 10781 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑁)
9931, 98absidd 14777 . . . . . . . . . . 11 (𝜑 → (abs‘𝑁) = 𝑁)
10097, 99oveq12d 7157 . . . . . . . . . 10 (𝜑 → ((abs‘2) · (abs‘𝑁)) = (2 · 𝑁))
10192, 100eqtrd 2836 . . . . . . . . 9 (𝜑 → (abs‘(2 · 𝑁)) = (2 · 𝑁))
102101oveq1d 7154 . . . . . . . 8 (𝜑 → ((abs‘(2 · 𝑁))↑-𝐽) = ((2 · 𝑁)↑-𝐽))
10391, 102eqtrd 2836 . . . . . . 7 (𝜑 → (abs‘((2 · 𝑁)↑-𝐽)) = ((2 · 𝑁)↑-𝐽))
104103, 97oveq12d 7157 . . . . . 6 (𝜑 → ((abs‘((2 · 𝑁)↑-𝐽)) / (abs‘2)) = (((2 · 𝑁)↑-𝐽) / 2))
10587, 104eqtrd 2836 . . . . 5 (𝜑 → (abs‘(((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁)↑-𝐽) / 2))
10685, 105eqtrd 2836 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (((2 · 𝑁)↑-𝐽) / 2))
10735recnd 10662 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℂ)
10852simpld 498 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
109107, 108, 6geoser 15217 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) = ((1 − (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / (1 − ((2 · 𝑁) · (abs‘𝐶)))))
110107, 6expcld 13510 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℂ)
111108necomd 3045 . . . . . 6 (𝜑 → 1 ≠ ((2 · 𝑁) · (abs‘𝐶)))
11279, 110, 79, 107, 111div2subd 11459 . . . . 5 (𝜑 → ((1 − (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / (1 − ((2 · 𝑁) · (abs‘𝐶)))) = (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
113109, 112eqtrd 2836 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) = (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
114106, 113oveq12d 7157 . . 3 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
115113, 40eqeltrrd 2894 . . . . 5 (𝜑 → (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
11635, 6reexpcld 13527 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℝ)
117116, 47, 57redivcld 11461 . . . . 5 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
118 2rp 12386 . . . . . . 7 2 ∈ ℝ+
119118a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ+)
120119rpgt0d 12426 . . . . . . . . . 10 (𝜑 → 0 < 2)
12129, 31, 120, 66mulgt0d 10788 . . . . . . . . 9 (𝜑 → 0 < (2 · 𝑁))
12232, 71, 1213jca 1125 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
123 expgt0 13462 . . . . . . . 8 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
124122, 123syl 17 . . . . . . 7 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
12548, 72, 124ltled 10781 . . . . . 6 (𝜑 → 0 ≤ ((2 · 𝑁)↑-𝐽))
12672, 119, 125divge0d 12463 . . . . 5 (𝜑 → 0 ≤ (((2 · 𝑁)↑-𝐽) / 2))
127116, 46resubcld 11061 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) ∈ ℝ)
12847, 54elrpd 12420 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+)
129116lem1d 11566 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
130127, 116, 128, 129lediv1dd 12481 . . . . 5 (𝜑 → (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
131115, 117, 73, 126, 130lemul2ad 11573 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
13247recnd 10662 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℂ)
133110, 132, 57divrecd 11412 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
134133oveq2d 7155 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
13558recnd 10662 . . . . . . 7 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℂ)
13674, 110, 135mulassd 10657 . . . . . 6 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
137136eqcomd 2807 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
13886, 110, 62, 44div23d 11446 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2) = ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)))
139138eqcomd 2807 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2))
14088, 70jca 515 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
14134recnd 10662 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐶) ∈ ℂ)
14212, 5, 51knoppndvlem13 33971 . . . . . . . . . . . . . 14 (𝜑𝐶 ≠ 0)
14333, 142absne0d 14802 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐶) ≠ 0)
144141, 143jca 515 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0))
145140, 144, 73jca 1125 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ))
146 mulexpz 13469 . . . . . . . . . . 11 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ) → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
147145, 146syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
148147oveq2d 7155 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))))
14988, 6expcld 13510 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
15042recnd 10662 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℂ)
15186, 149, 150mulassd 10657 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))))
152151eqcomd 2807 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))) = ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)))
153140, 71, 7jca32 519 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (-𝐽 ∈ ℤ ∧ 𝐽 ∈ ℤ)))
154 expaddz 13473 . . . . . . . . . . . . . 14 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (-𝐽 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)))
155153, 154syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)))
156155eqcomd 2807 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) = ((2 · 𝑁)↑(-𝐽 + 𝐽)))
15771zcnd 12080 . . . . . . . . . . . . . . 15 (𝜑 → -𝐽 ∈ ℂ)
1586nn0cnd 11949 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℂ)
159157, 158addcomd 10835 . . . . . . . . . . . . . 14 (𝜑 → (-𝐽 + 𝐽) = (𝐽 + -𝐽))
160158negidd 10980 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + -𝐽) = 0)
161159, 160eqtrd 2836 . . . . . . . . . . . . 13 (𝜑 → (-𝐽 + 𝐽) = 0)
162161oveq2d 7155 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = ((2 · 𝑁)↑0))
16388exp0d 13504 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑0) = 1)
164156, 162, 1633eqtrd 2840 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) = 1)
165164oveq1d 7154 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = (1 · ((abs‘𝐶)↑𝐽)))
166150mulid2d 10652 . . . . . . . . . 10 (𝜑 → (1 · ((abs‘𝐶)↑𝐽)) = ((abs‘𝐶)↑𝐽))
167165, 166eqtrd 2836 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = ((abs‘𝐶)↑𝐽))
168148, 152, 1673eqtrd 2840 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = ((abs‘𝐶)↑𝐽))
169168oveq1d 7154 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2) = (((abs‘𝐶)↑𝐽) / 2))
170139, 169eqtrd 2836 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = (((abs‘𝐶)↑𝐽) / 2))
171170oveq1d 7154 . . . . 5 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
172134, 137, 1713eqtrd 2840 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
173131, 172breqtrd 5059 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
174114, 173eqbrtrd 5055 . 2 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
17523, 41, 59, 60, 174letrd 10790 1 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863  -cneg 10864   / cdiv 11290  cn 11629  2c2 11684  0cn0 11889  cz 11973  +crp 12381  (,)cioo 12730  ...cfz 12889  cfl 13159  cexp 13429  abscabs 14588  Σcsu 15037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ioo 12734  df-ico 12736  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038
This theorem is referenced by:  knoppndvlem15  33973
  Copyright terms: Public domain W3C validator