MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz2mulcl Structured version   Visualization version   GIF version

Theorem uz2mulcl 12934
Description: Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
uz2mulcl ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ (ℤ‘2))

Proof of Theorem uz2mulcl
StepHypRef Expression
1 eluzelz 12854 . . 3 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
2 eluzelz 12854 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 zmulcl 12633 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
41, 2, 3syl2an 596 . 2 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ ℤ)
5 eluz2b1 12927 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℤ ∧ 1 < 𝑀))
6 zre 12584 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
76anim1i 615 . . . 4 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (𝑀 ∈ ℝ ∧ 1 < 𝑀))
85, 7sylbi 217 . . 3 (𝑀 ∈ (ℤ‘2) → (𝑀 ∈ ℝ ∧ 1 < 𝑀))
9 eluz2b1 12927 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
10 zre 12584 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110anim1i 615 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
129, 11sylbi 217 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
13 mulgt1 12095 . . . 4 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (1 < 𝑀 ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁))
1413an4s 660 . . 3 (((𝑀 ∈ ℝ ∧ 1 < 𝑀) ∧ (𝑁 ∈ ℝ ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁))
158, 12, 14syl2an 596 . 2 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → 1 < (𝑀 · 𝑁))
16 eluz2b1 12927 . 2 ((𝑀 · 𝑁) ∈ (ℤ‘2) ↔ ((𝑀 · 𝑁) ∈ ℤ ∧ 1 < (𝑀 · 𝑁)))
174, 15, 16sylanbrc 583 1 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ (ℤ‘2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107   class class class wbr 5116  cfv 6527  (class class class)co 7399  cr 11120  1c1 11122   · cmul 11126   < clt 11261  2c2 12287  cz 12580  cuz 12844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-n0 12494  df-z 12581  df-uz 12845
This theorem is referenced by:  jm3.1lem1  42966
  Copyright terms: Public domain W3C validator