Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > le0neg1d | Structured version Visualization version GIF version |
Description: Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
le0neg1d | ⊢ (𝜑 → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | le0neg1 11187 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2112 class class class wbr 5033 ℝcr 10575 0cc0 10576 ≤ cle 10715 -cneg 10910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 |
This theorem is referenced by: mulle0b 11550 0mnnnnn0 11967 sqeqd 14574 cnpart 14648 prmirred 20265 xrhmeo 23648 pjthlem1 24138 mbfposr 24353 dvfsumlem2 24727 coseq0negpitopi 25196 tanord 25230 cxpsqrtlem 25393 asinlem3a 25556 atanlogadd 25600 lgsneg 26005 pntpbnd1 26270 pjhthlem1 29274 xrge0iifcnv 31405 fdvnegge 32102 itgaddnclem2 35397 monotoddzzfi 40257 oddcomabszz 40259 jm2.24 40278 acongeq 40298 requad01 44507 eenglngeehlnmlem2 45518 |
Copyright terms: Public domain | W3C validator |