MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg2 Structured version   Visualization version   GIF version

Theorem mulneg2 10759
Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
mulneg2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg2
StepHypRef Expression
1 mulneg1 10758 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-𝐵 · 𝐴) = -(𝐵 · 𝐴))
21ancoms 451 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐵 · 𝐴) = -(𝐵 · 𝐴))
3 negcl 10572 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
4 mulcom 10310 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (𝐴 · -𝐵) = (-𝐵 · 𝐴))
53, 4sylan2 587 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = (-𝐵 · 𝐴))
6 mulcom 10310 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
76negeqd 10566 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 · 𝐵) = -(𝐵 · 𝐴))
82, 5, 73eqtr4d 2843 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  (class class class)co 6878  cc 10222   · cmul 10229  -cneg 10557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-ltxr 10368  df-sub 10558  df-neg 10559
This theorem is referenced by:  mulneg12  10760  submul2  10762  mulsub  10765  mulneg2i  10769  mulneg2d  10776  mulle0b  11186  zmulcl  11716  binom2sub  13235  cjreb  14204  recj  14205  reneg  14206  imcj  14213  imneg  14214  ipcnval  14224  cjneg  14228  cnpart  14321  efexp  15167  efmival  15219  tanhbnd  15227  sinsub  15234  cossub  15235  odd2np1  15401  itgneg  23911  dvsincos  24085  sinperlem  24574  efimpi  24585  dcubic2  24923  dcubic  24925  dquart  24932  quartlem1  24936  asinlem2  24948  asinneg  24965  sinasin  24968  cosasin  24983  atanneg  24986  atanlogadd  24993  atanlogsub  24995  cosatan  25000  atantan  25002  atans2  25010  rpvmasum2  25553  ipasslem2  28212  dvasin  33984  pell1234qrdich  38211  rmxm1  38284
  Copyright terms: Public domain W3C validator