MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg2 Structured version   Visualization version   GIF version

Theorem mulneg2 11700
Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
mulneg2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg2
StepHypRef Expression
1 mulneg1 11699 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-𝐵 · 𝐴) = -(𝐵 · 𝐴))
21ancoms 458 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐵 · 𝐴) = -(𝐵 · 𝐴))
3 negcl 11508 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
4 mulcom 11241 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (𝐴 · -𝐵) = (-𝐵 · 𝐴))
53, 4sylan2 593 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = (-𝐵 · 𝐴))
6 mulcom 11241 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
76negeqd 11502 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 · 𝐵) = -(𝐵 · 𝐴))
82, 5, 73eqtr4d 2787 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7431  cc 11153   · cmul 11160  -cneg 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495
This theorem is referenced by:  mulneg12  11701  submul2  11703  mulsub  11706  mulneg2i  11710  mulneg2d  11717  mulle0b  12139  zmulcl  12666  binom2sub  14259  cjreb  15162  recj  15163  reneg  15164  imcj  15171  imneg  15172  ipcnval  15182  cjneg  15186  cnpart  15279  efexp  16137  efmival  16189  tanhbnd  16197  sinsub  16204  cossub  16205  odd2np1  16378  itgneg  25839  dvsincos  26019  sinperlem  26522  efimpi  26533  dcubic2  26887  dcubic  26889  dquart  26896  quartlem1  26900  asinlem2  26912  asinneg  26929  sinasin  26932  cosasin  26947  atanneg  26950  atanlogadd  26957  atanlogsub  26959  cosatan  26964  atantan  26966  atans2  26974  rpvmasum2  27556  ipasslem2  30851  dvasin  37711  pell1234qrdich  42872  rmxm1  42946
  Copyright terms: Public domain W3C validator