MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recsex Structured version   Visualization version   GIF version

Theorem recsex 28121
Description: A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
recsex ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Distinct variable group:   𝑥,𝐴

Proof of Theorem recsex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0sno 27738 . . . 4 0s No
2 slttrine 27663 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
31, 2mpan2 691 . . 3 (𝐴 No → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
4 sltneg 27951 . . . . . . 7 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
51, 4mpan2 691 . . . . . 6 (𝐴 No → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
6 negs0s 27932 . . . . . . 7 ( -us ‘ 0s ) = 0s
76breq1i 5114 . . . . . 6 (( -us ‘ 0s ) <s ( -us𝐴) ↔ 0s <s ( -us𝐴))
85, 7bitrdi 287 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ 0s <s ( -us𝐴)))
9 negscl 27942 . . . . . . . 8 (𝐴 No → ( -us𝐴) ∈ No )
10 precsex 28120 . . . . . . . 8 ((( -us𝐴) ∈ No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
119, 10sylan 580 . . . . . . 7 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
12 simprl 770 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → 𝑦 No )
1312negscld 27943 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ( -us𝑦) ∈ No )
14 simpll 766 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝐴 No )
15 simpr 484 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝑦 No )
1614, 15mulnegs1d 28063 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = ( -us ‘(𝐴 ·s 𝑦)))
1714, 15mulnegs2d 28064 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (𝐴 ·s ( -us𝑦)) = ( -us ‘(𝐴 ·s 𝑦)))
1816, 17eqtr4d 2767 . . . . . . . . . . 11 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = (𝐴 ·s ( -us𝑦)))
1918eqeq1d 2731 . . . . . . . . . 10 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2019biimpd 229 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s → (𝐴 ·s ( -us𝑦)) = 1s ))
2120impr 454 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → (𝐴 ·s ( -us𝑦)) = 1s )
22 oveq2 7395 . . . . . . . . . 10 (𝑥 = ( -us𝑦) → (𝐴 ·s 𝑥) = (𝐴 ·s ( -us𝑦)))
2322eqeq1d 2731 . . . . . . . . 9 (𝑥 = ( -us𝑦) → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2423rspcev 3588 . . . . . . . 8 ((( -us𝑦) ∈ No ∧ (𝐴 ·s ( -us𝑦)) = 1s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2513, 21, 24syl2anc 584 . . . . . . 7 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2611, 25rexlimddv 3140 . . . . . 6 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2726ex 412 . . . . 5 (𝐴 No → ( 0s <s ( -us𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
288, 27sylbid 240 . . . 4 (𝐴 No → (𝐴 <s 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
29 precsex 28120 . . . . 5 ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
3029ex 412 . . . 4 (𝐴 No → ( 0s <s 𝐴 → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3128, 30jaod 859 . . 3 (𝐴 No → ((𝐴 <s 0s ∨ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
323, 31sylbid 240 . 2 (𝐴 No → (𝐴 ≠ 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3332imp 406 1 ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   <s cslt 27552   0s c0s 27734   1s c1s 27735   -us cnegs 27925   ·s cmuls 28009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-dc 10399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-divs 28091
This theorem is referenced by:  recsexd  28122  divsmul  28123  divscl  28125
  Copyright terms: Public domain W3C validator