MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recsex Structured version   Visualization version   GIF version

Theorem recsex 28243
Description: A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
recsex ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Distinct variable group:   𝑥,𝐴

Proof of Theorem recsex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0sno 27871 . . . 4 0s No
2 slttrine 27796 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
31, 2mpan2 691 . . 3 (𝐴 No → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
4 sltneg 28077 . . . . . . 7 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
51, 4mpan2 691 . . . . . 6 (𝐴 No → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
6 negs0s 28058 . . . . . . 7 ( -us ‘ 0s ) = 0s
76breq1i 5150 . . . . . 6 (( -us ‘ 0s ) <s ( -us𝐴) ↔ 0s <s ( -us𝐴))
85, 7bitrdi 287 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ 0s <s ( -us𝐴)))
9 negscl 28068 . . . . . . . 8 (𝐴 No → ( -us𝐴) ∈ No )
10 precsex 28242 . . . . . . . 8 ((( -us𝐴) ∈ No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
119, 10sylan 580 . . . . . . 7 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
12 simprl 771 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → 𝑦 No )
1312negscld 28069 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ( -us𝑦) ∈ No )
14 simpll 767 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝐴 No )
15 simpr 484 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝑦 No )
1614, 15mulnegs1d 28186 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = ( -us ‘(𝐴 ·s 𝑦)))
1714, 15mulnegs2d 28187 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (𝐴 ·s ( -us𝑦)) = ( -us ‘(𝐴 ·s 𝑦)))
1816, 17eqtr4d 2780 . . . . . . . . . . 11 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = (𝐴 ·s ( -us𝑦)))
1918eqeq1d 2739 . . . . . . . . . 10 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2019biimpd 229 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s → (𝐴 ·s ( -us𝑦)) = 1s ))
2120impr 454 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → (𝐴 ·s ( -us𝑦)) = 1s )
22 oveq2 7439 . . . . . . . . . 10 (𝑥 = ( -us𝑦) → (𝐴 ·s 𝑥) = (𝐴 ·s ( -us𝑦)))
2322eqeq1d 2739 . . . . . . . . 9 (𝑥 = ( -us𝑦) → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2423rspcev 3622 . . . . . . . 8 ((( -us𝑦) ∈ No ∧ (𝐴 ·s ( -us𝑦)) = 1s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2513, 21, 24syl2anc 584 . . . . . . 7 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2611, 25rexlimddv 3161 . . . . . 6 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2726ex 412 . . . . 5 (𝐴 No → ( 0s <s ( -us𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
288, 27sylbid 240 . . . 4 (𝐴 No → (𝐴 <s 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
29 precsex 28242 . . . . 5 ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
3029ex 412 . . . 4 (𝐴 No → ( 0s <s 𝐴 → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3128, 30jaod 860 . . 3 (𝐴 No → ((𝐴 <s 0s ∨ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
323, 31sylbid 240 . 2 (𝐴 No → (𝐴 ≠ 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3332imp 406 1 ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431   No csur 27684   <s cslt 27685   0s c0s 27867   1s c1s 27868   -us cnegs 28051   ·s cmuls 28132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-dc 10486
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-1s 27870  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec 27971  df-norec2 27982  df-adds 27993  df-negs 28053  df-subs 28054  df-muls 28133  df-divs 28214
This theorem is referenced by:  recsexd  28244  divsmul  28245  divscl  28247
  Copyright terms: Public domain W3C validator