MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recsex Structured version   Visualization version   GIF version

Theorem recsex 28157
Description: A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
recsex ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Distinct variable group:   𝑥,𝐴

Proof of Theorem recsex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0sno 27770 . . . 4 0s No
2 slttrine 27690 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
31, 2mpan2 691 . . 3 (𝐴 No → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
4 sltneg 27987 . . . . . . 7 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
51, 4mpan2 691 . . . . . 6 (𝐴 No → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
6 negs0s 27968 . . . . . . 7 ( -us ‘ 0s ) = 0s
76breq1i 5096 . . . . . 6 (( -us ‘ 0s ) <s ( -us𝐴) ↔ 0s <s ( -us𝐴))
85, 7bitrdi 287 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ 0s <s ( -us𝐴)))
9 negscl 27978 . . . . . . . 8 (𝐴 No → ( -us𝐴) ∈ No )
10 precsex 28156 . . . . . . . 8 ((( -us𝐴) ∈ No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
119, 10sylan 580 . . . . . . 7 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
12 simprl 770 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → 𝑦 No )
1312negscld 27979 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ( -us𝑦) ∈ No )
14 simpll 766 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝐴 No )
15 simpr 484 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝑦 No )
1614, 15mulnegs1d 28099 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = ( -us ‘(𝐴 ·s 𝑦)))
1714, 15mulnegs2d 28100 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (𝐴 ·s ( -us𝑦)) = ( -us ‘(𝐴 ·s 𝑦)))
1816, 17eqtr4d 2769 . . . . . . . . . . 11 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = (𝐴 ·s ( -us𝑦)))
1918eqeq1d 2733 . . . . . . . . . 10 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2019biimpd 229 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s → (𝐴 ·s ( -us𝑦)) = 1s ))
2120impr 454 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → (𝐴 ·s ( -us𝑦)) = 1s )
22 oveq2 7354 . . . . . . . . . 10 (𝑥 = ( -us𝑦) → (𝐴 ·s 𝑥) = (𝐴 ·s ( -us𝑦)))
2322eqeq1d 2733 . . . . . . . . 9 (𝑥 = ( -us𝑦) → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2423rspcev 3572 . . . . . . . 8 ((( -us𝑦) ∈ No ∧ (𝐴 ·s ( -us𝑦)) = 1s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2513, 21, 24syl2anc 584 . . . . . . 7 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2611, 25rexlimddv 3139 . . . . . 6 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2726ex 412 . . . . 5 (𝐴 No → ( 0s <s ( -us𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
288, 27sylbid 240 . . . 4 (𝐴 No → (𝐴 <s 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
29 precsex 28156 . . . . 5 ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
3029ex 412 . . . 4 (𝐴 No → ( 0s <s 𝐴 → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3128, 30jaod 859 . . 3 (𝐴 No → ((𝐴 <s 0s ∨ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
323, 31sylbid 240 . 2 (𝐴 No → (𝐴 ≠ 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3332imp 406 1 ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346   No csur 27578   <s cslt 27579   0s c0s 27766   1s c1s 27767   -us cnegs 27961   ·s cmuls 28045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-dc 10337
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-divs 28127
This theorem is referenced by:  recsexd  28158  divsmul  28159  divscl  28161
  Copyright terms: Public domain W3C validator