| Step | Hyp | Ref
| Expression |
| 1 | | 0sno 27871 |
. . . 4
⊢
0s ∈ No |
| 2 | | slttrine 27796 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 0s ∈ No ) →
(𝐴 ≠ 0s
↔ (𝐴 <s
0s ∨ 0s <s 𝐴))) |
| 3 | 1, 2 | mpan2 691 |
. . 3
⊢ (𝐴 ∈
No → (𝐴 ≠
0s ↔ (𝐴
<s 0s ∨ 0s <s 𝐴))) |
| 4 | | sltneg 28077 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 0s ∈ No ) →
(𝐴 <s 0s
↔ ( -us ‘ 0s ) <s ( -us
‘𝐴))) |
| 5 | 1, 4 | mpan2 691 |
. . . . . 6
⊢ (𝐴 ∈
No → (𝐴 <s
0s ↔ ( -us ‘ 0s ) <s (
-us ‘𝐴))) |
| 6 | | negs0s 28058 |
. . . . . . 7
⊢ (
-us ‘ 0s ) = 0s |
| 7 | 6 | breq1i 5150 |
. . . . . 6
⊢ ((
-us ‘ 0s ) <s ( -us ‘𝐴) ↔ 0s <s (
-us ‘𝐴)) |
| 8 | 5, 7 | bitrdi 287 |
. . . . 5
⊢ (𝐴 ∈
No → (𝐴 <s
0s ↔ 0s <s ( -us ‘𝐴))) |
| 9 | | negscl 28068 |
. . . . . . . 8
⊢ (𝐴 ∈
No → ( -us ‘𝐴) ∈ No
) |
| 10 | | precsex 28242 |
. . . . . . . 8
⊢ (((
-us ‘𝐴)
∈ No ∧ 0s <s (
-us ‘𝐴))
→ ∃𝑦 ∈
No (( -us ‘𝐴) ·s 𝑦) = 1s ) |
| 11 | 9, 10 | sylan 580 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) → ∃𝑦 ∈ No ((
-us ‘𝐴)
·s 𝑦) =
1s ) |
| 12 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ (𝑦 ∈ No
∧ (( -us ‘𝐴) ·s 𝑦) = 1s )) → 𝑦 ∈
No ) |
| 13 | 12 | negscld 28069 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ (𝑦 ∈ No
∧ (( -us ‘𝐴) ·s 𝑦) = 1s )) → ( -us
‘𝑦) ∈ No ) |
| 14 | | simpll 767 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ 𝐴 ∈ No ) |
| 15 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ 𝑦 ∈ No ) |
| 16 | 14, 15 | mulnegs1d 28186 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ (( -us ‘𝐴) ·s 𝑦) = ( -us ‘(𝐴 ·s 𝑦))) |
| 17 | 14, 15 | mulnegs2d 28187 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ (𝐴
·s ( -us ‘𝑦)) = ( -us ‘(𝐴 ·s 𝑦))) |
| 18 | 16, 17 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ (( -us ‘𝐴) ·s 𝑦) = (𝐴 ·s ( -us
‘𝑦))) |
| 19 | 18 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ ((( -us ‘𝐴) ·s 𝑦) = 1s ↔ (𝐴 ·s ( -us
‘𝑦)) = 1s
)) |
| 20 | 19 | biimpd 229 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ ((( -us ‘𝐴) ·s 𝑦) = 1s → (𝐴 ·s ( -us
‘𝑦)) = 1s
)) |
| 21 | 20 | impr 454 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ (𝑦 ∈ No
∧ (( -us ‘𝐴) ·s 𝑦) = 1s )) → (𝐴 ·s (
-us ‘𝑦)) =
1s ) |
| 22 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = ( -us ‘𝑦) → (𝐴 ·s 𝑥) = (𝐴 ·s ( -us
‘𝑦))) |
| 23 | 22 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑥 = ( -us ‘𝑦) → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s ( -us
‘𝑦)) = 1s
)) |
| 24 | 23 | rspcev 3622 |
. . . . . . . 8
⊢ (((
-us ‘𝑦)
∈ No ∧ (𝐴 ·s ( -us
‘𝑦)) = 1s
) → ∃𝑥 ∈
No (𝐴 ·s 𝑥) = 1s ) |
| 25 | 13, 21, 24 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ (𝑦 ∈ No
∧ (( -us ‘𝐴) ·s 𝑦) = 1s )) → ∃𝑥 ∈
No (𝐴
·s 𝑥) =
1s ) |
| 26 | 11, 25 | rexlimddv 3161 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
) |
| 27 | 26 | ex 412 |
. . . . 5
⊢ (𝐴 ∈
No → ( 0s <s ( -us ‘𝐴) → ∃𝑥 ∈
No (𝐴
·s 𝑥) =
1s )) |
| 28 | 8, 27 | sylbid 240 |
. . . 4
⊢ (𝐴 ∈
No → (𝐴 <s
0s → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
)) |
| 29 | | precsex 28242 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 0s <s 𝐴) → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
) |
| 30 | 29 | ex 412 |
. . . 4
⊢ (𝐴 ∈
No → ( 0s <s 𝐴 → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
)) |
| 31 | 28, 30 | jaod 860 |
. . 3
⊢ (𝐴 ∈
No → ((𝐴 <s
0s ∨ 0s <s 𝐴) → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
)) |
| 32 | 3, 31 | sylbid 240 |
. 2
⊢ (𝐴 ∈
No → (𝐴 ≠
0s → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
)) |
| 33 | 32 | imp 406 |
1
⊢ ((𝐴 ∈
No ∧ 𝐴 ≠
0s ) → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
) |