MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recsex Structured version   Visualization version   GIF version

Theorem recsex 28128
Description: A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
recsex ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Distinct variable group:   𝑥,𝐴

Proof of Theorem recsex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0sno 27741 . . . 4 0s No
2 slttrine 27661 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
31, 2mpan2 691 . . 3 (𝐴 No → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
4 sltneg 27958 . . . . . . 7 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
51, 4mpan2 691 . . . . . 6 (𝐴 No → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
6 negs0s 27939 . . . . . . 7 ( -us ‘ 0s ) = 0s
76breq1i 5099 . . . . . 6 (( -us ‘ 0s ) <s ( -us𝐴) ↔ 0s <s ( -us𝐴))
85, 7bitrdi 287 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ 0s <s ( -us𝐴)))
9 negscl 27949 . . . . . . . 8 (𝐴 No → ( -us𝐴) ∈ No )
10 precsex 28127 . . . . . . . 8 ((( -us𝐴) ∈ No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
119, 10sylan 580 . . . . . . 7 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
12 simprl 770 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → 𝑦 No )
1312negscld 27950 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ( -us𝑦) ∈ No )
14 simpll 766 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝐴 No )
15 simpr 484 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝑦 No )
1614, 15mulnegs1d 28070 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = ( -us ‘(𝐴 ·s 𝑦)))
1714, 15mulnegs2d 28071 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (𝐴 ·s ( -us𝑦)) = ( -us ‘(𝐴 ·s 𝑦)))
1816, 17eqtr4d 2767 . . . . . . . . . . 11 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = (𝐴 ·s ( -us𝑦)))
1918eqeq1d 2731 . . . . . . . . . 10 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2019biimpd 229 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s → (𝐴 ·s ( -us𝑦)) = 1s ))
2120impr 454 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → (𝐴 ·s ( -us𝑦)) = 1s )
22 oveq2 7357 . . . . . . . . . 10 (𝑥 = ( -us𝑦) → (𝐴 ·s 𝑥) = (𝐴 ·s ( -us𝑦)))
2322eqeq1d 2731 . . . . . . . . 9 (𝑥 = ( -us𝑦) → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2423rspcev 3577 . . . . . . . 8 ((( -us𝑦) ∈ No ∧ (𝐴 ·s ( -us𝑦)) = 1s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2513, 21, 24syl2anc 584 . . . . . . 7 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2611, 25rexlimddv 3136 . . . . . 6 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2726ex 412 . . . . 5 (𝐴 No → ( 0s <s ( -us𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
288, 27sylbid 240 . . . 4 (𝐴 No → (𝐴 <s 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
29 precsex 28127 . . . . 5 ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
3029ex 412 . . . 4 (𝐴 No → ( 0s <s 𝐴 → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3128, 30jaod 859 . . 3 (𝐴 No → ((𝐴 <s 0s ∨ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
323, 31sylbid 240 . 2 (𝐴 No → (𝐴 ≠ 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3332imp 406 1 ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349   No csur 27549   <s cslt 27550   0s c0s 27737   1s c1s 27738   -us cnegs 27932   ·s cmuls 28016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-dc 10340
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27739  df-1s 27740  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-divs 28098
This theorem is referenced by:  recsexd  28129  divsmul  28130  divscl  28132
  Copyright terms: Public domain W3C validator