Step | Hyp | Ref
| Expression |
1 | | 0sno 27674 |
. . . 4
⊢
0s ∈ No |
2 | | slttrine 27599 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 0s ∈ No ) →
(𝐴 ≠ 0s
↔ (𝐴 <s
0s ∨ 0s <s 𝐴))) |
3 | 1, 2 | mpan2 688 |
. . 3
⊢ (𝐴 ∈
No → (𝐴 ≠
0s ↔ (𝐴
<s 0s ∨ 0s <s 𝐴))) |
4 | | sltneg 27872 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 0s ∈ No ) →
(𝐴 <s 0s
↔ ( -us ‘ 0s ) <s ( -us
‘𝐴))) |
5 | 1, 4 | mpan2 688 |
. . . . . 6
⊢ (𝐴 ∈
No → (𝐴 <s
0s ↔ ( -us ‘ 0s ) <s (
-us ‘𝐴))) |
6 | | negs0s 27854 |
. . . . . . 7
⊢ (
-us ‘ 0s ) = 0s |
7 | 6 | breq1i 5155 |
. . . . . 6
⊢ ((
-us ‘ 0s ) <s ( -us ‘𝐴) ↔ 0s <s (
-us ‘𝐴)) |
8 | 5, 7 | bitrdi 287 |
. . . . 5
⊢ (𝐴 ∈
No → (𝐴 <s
0s ↔ 0s <s ( -us ‘𝐴))) |
9 | | negscl 27863 |
. . . . . . . 8
⊢ (𝐴 ∈
No → ( -us ‘𝐴) ∈ No
) |
10 | | precsex 28031 |
. . . . . . . 8
⊢ (((
-us ‘𝐴)
∈ No ∧ 0s <s (
-us ‘𝐴))
→ ∃𝑦 ∈
No (( -us ‘𝐴) ·s 𝑦) = 1s ) |
11 | 9, 10 | sylan 579 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) → ∃𝑦 ∈ No ((
-us ‘𝐴)
·s 𝑦) =
1s ) |
12 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ (𝑦 ∈ No
∧ (( -us ‘𝐴) ·s 𝑦) = 1s )) → 𝑦 ∈
No ) |
13 | 12 | negscld 27864 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ (𝑦 ∈ No
∧ (( -us ‘𝐴) ·s 𝑦) = 1s )) → ( -us
‘𝑦) ∈ No ) |
14 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ 𝐴 ∈ No ) |
15 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ 𝑦 ∈ No ) |
16 | 14, 15 | mulnegs1d 27975 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ (( -us ‘𝐴) ·s 𝑦) = ( -us ‘(𝐴 ·s 𝑦))) |
17 | 14, 15 | mulnegs2d 27976 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ (𝐴
·s ( -us ‘𝑦)) = ( -us ‘(𝐴 ·s 𝑦))) |
18 | 16, 17 | eqtr4d 2774 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ (( -us ‘𝐴) ·s 𝑦) = (𝐴 ·s ( -us
‘𝑦))) |
19 | 18 | eqeq1d 2733 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ ((( -us ‘𝐴) ·s 𝑦) = 1s ↔ (𝐴 ·s ( -us
‘𝑦)) = 1s
)) |
20 | 19 | biimpd 228 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ 𝑦 ∈ No )
→ ((( -us ‘𝐴) ·s 𝑦) = 1s → (𝐴 ·s ( -us
‘𝑦)) = 1s
)) |
21 | 20 | impr 454 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ (𝑦 ∈ No
∧ (( -us ‘𝐴) ·s 𝑦) = 1s )) → (𝐴 ·s (
-us ‘𝑦)) =
1s ) |
22 | | oveq2 7420 |
. . . . . . . . . 10
⊢ (𝑥 = ( -us ‘𝑦) → (𝐴 ·s 𝑥) = (𝐴 ·s ( -us
‘𝑦))) |
23 | 22 | eqeq1d 2733 |
. . . . . . . . 9
⊢ (𝑥 = ( -us ‘𝑦) → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s ( -us
‘𝑦)) = 1s
)) |
24 | 23 | rspcev 3612 |
. . . . . . . 8
⊢ (((
-us ‘𝑦)
∈ No ∧ (𝐴 ·s ( -us
‘𝑦)) = 1s
) → ∃𝑥 ∈
No (𝐴 ·s 𝑥) = 1s ) |
25 | 13, 21, 24 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) ∧ (𝑦 ∈ No
∧ (( -us ‘𝐴) ·s 𝑦) = 1s )) → ∃𝑥 ∈
No (𝐴
·s 𝑥) =
1s ) |
26 | 11, 25 | rexlimddv 3160 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 0s <s ( -us ‘𝐴)) → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
) |
27 | 26 | ex 412 |
. . . . 5
⊢ (𝐴 ∈
No → ( 0s <s ( -us ‘𝐴) → ∃𝑥 ∈
No (𝐴
·s 𝑥) =
1s )) |
28 | 8, 27 | sylbid 239 |
. . . 4
⊢ (𝐴 ∈
No → (𝐴 <s
0s → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
)) |
29 | | precsex 28031 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 0s <s 𝐴) → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
) |
30 | 29 | ex 412 |
. . . 4
⊢ (𝐴 ∈
No → ( 0s <s 𝐴 → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
)) |
31 | 28, 30 | jaod 856 |
. . 3
⊢ (𝐴 ∈
No → ((𝐴 <s
0s ∨ 0s <s 𝐴) → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
)) |
32 | 3, 31 | sylbid 239 |
. 2
⊢ (𝐴 ∈
No → (𝐴 ≠
0s → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
)) |
33 | 32 | imp 406 |
1
⊢ ((𝐴 ∈
No ∧ 𝐴 ≠
0s ) → ∃𝑥 ∈ No
(𝐴 ·s
𝑥) = 1s
) |