MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recsex Structured version   Visualization version   GIF version

Theorem recsex 28032
Description: A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
recsex ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Distinct variable group:   𝑥,𝐴

Proof of Theorem recsex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0sno 27674 . . . 4 0s No
2 slttrine 27599 . . . 4 ((𝐴 No ∧ 0s No ) → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
31, 2mpan2 688 . . 3 (𝐴 No → (𝐴 ≠ 0s ↔ (𝐴 <s 0s ∨ 0s <s 𝐴)))
4 sltneg 27872 . . . . . . 7 ((𝐴 No ∧ 0s No ) → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
51, 4mpan2 688 . . . . . 6 (𝐴 No → (𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐴)))
6 negs0s 27854 . . . . . . 7 ( -us ‘ 0s ) = 0s
76breq1i 5155 . . . . . 6 (( -us ‘ 0s ) <s ( -us𝐴) ↔ 0s <s ( -us𝐴))
85, 7bitrdi 287 . . . . 5 (𝐴 No → (𝐴 <s 0s ↔ 0s <s ( -us𝐴)))
9 negscl 27863 . . . . . . . 8 (𝐴 No → ( -us𝐴) ∈ No )
10 precsex 28031 . . . . . . . 8 ((( -us𝐴) ∈ No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
119, 10sylan 579 . . . . . . 7 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑦 No (( -us𝐴) ·s 𝑦) = 1s )
12 simprl 768 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → 𝑦 No )
1312negscld 27864 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ( -us𝑦) ∈ No )
14 simpll 764 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝐴 No )
15 simpr 484 . . . . . . . . . . . . 13 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → 𝑦 No )
1614, 15mulnegs1d 27975 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = ( -us ‘(𝐴 ·s 𝑦)))
1714, 15mulnegs2d 27976 . . . . . . . . . . . 12 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (𝐴 ·s ( -us𝑦)) = ( -us ‘(𝐴 ·s 𝑦)))
1816, 17eqtr4d 2774 . . . . . . . . . . 11 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → (( -us𝐴) ·s 𝑦) = (𝐴 ·s ( -us𝑦)))
1918eqeq1d 2733 . . . . . . . . . 10 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2019biimpd 228 . . . . . . . . 9 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ 𝑦 No ) → ((( -us𝐴) ·s 𝑦) = 1s → (𝐴 ·s ( -us𝑦)) = 1s ))
2120impr 454 . . . . . . . 8 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → (𝐴 ·s ( -us𝑦)) = 1s )
22 oveq2 7420 . . . . . . . . . 10 (𝑥 = ( -us𝑦) → (𝐴 ·s 𝑥) = (𝐴 ·s ( -us𝑦)))
2322eqeq1d 2733 . . . . . . . . 9 (𝑥 = ( -us𝑦) → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s ( -us𝑦)) = 1s ))
2423rspcev 3612 . . . . . . . 8 ((( -us𝑦) ∈ No ∧ (𝐴 ·s ( -us𝑦)) = 1s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2513, 21, 24syl2anc 583 . . . . . . 7 (((𝐴 No ∧ 0s <s ( -us𝐴)) ∧ (𝑦 No ∧ (( -us𝐴) ·s 𝑦) = 1s )) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2611, 25rexlimddv 3160 . . . . . 6 ((𝐴 No ∧ 0s <s ( -us𝐴)) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
2726ex 412 . . . . 5 (𝐴 No → ( 0s <s ( -us𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
288, 27sylbid 239 . . . 4 (𝐴 No → (𝐴 <s 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
29 precsex 28031 . . . . 5 ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
3029ex 412 . . . 4 (𝐴 No → ( 0s <s 𝐴 → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3128, 30jaod 856 . . 3 (𝐴 No → ((𝐴 <s 0s ∨ 0s <s 𝐴) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
323, 31sylbid 239 . 2 (𝐴 No → (𝐴 ≠ 0s → ∃𝑥 No (𝐴 ·s 𝑥) = 1s ))
3332imp 406 1 ((𝐴 No 𝐴 ≠ 0s ) → ∃𝑥 No (𝐴 ·s 𝑥) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  wrex 3069   class class class wbr 5148  cfv 6543  (class class class)co 7412   No csur 27488   <s cslt 27489   0s c0s 27670   1s c1s 27671   -us cnegs 27847   ·s cmuls 27921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-dc 10447
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-nadd 8671  df-no 27491  df-slt 27492  df-bday 27493  df-sle 27593  df-sslt 27629  df-scut 27631  df-0s 27672  df-1s 27673  df-made 27689  df-old 27690  df-left 27692  df-right 27693  df-norec 27770  df-norec2 27781  df-adds 27792  df-negs 27849  df-subs 27850  df-muls 27922  df-divs 28003
This theorem is referenced by:  recsexd  28033  divsmul  28034  divscl  28036
  Copyright terms: Public domain W3C validator