MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmuls Structured version   Visualization version   GIF version

Theorem absmuls 28286
Description: Surreal absolute value distributes over multiplication. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
absmuls ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))

Proof of Theorem absmuls
StepHypRef Expression
1 mulscl 28178 . . . . . . 7 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
21adantr 480 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → (𝐴 ·s 𝐵) ∈ No )
3 simplll 774 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 𝐴 No )
4 simpllr 775 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 𝐵 No )
5 simplr 768 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s 𝐴)
6 simpr 484 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s 𝐵)
73, 4, 5, 6mulsge0d 28190 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
8 abssid 28283 . . . . . 6 (((𝐴 ·s 𝐵) ∈ No ∧ 0s ≤s (𝐴 ·s 𝐵)) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s 𝐵))
92, 7, 8syl2an2r 684 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s 𝐵))
10 abssid 28283 . . . . . . 7 ((𝐵 No ∧ 0s ≤s 𝐵) → (abss𝐵) = 𝐵)
1110ad4ant24 753 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (abss𝐵) = 𝐵)
1211oveq2d 7464 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (𝐴 ·s (abss𝐵)) = (𝐴 ·s 𝐵))
139, 12eqtr4d 2783 . . . 4 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s (abss𝐵)))
14 simplll 774 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐴 No )
15 simpllr 775 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐵 No )
1614, 15mulnegs2d 28205 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s ( -us𝐵)) = ( -us ‘(𝐴 ·s 𝐵)))
17 abssnid 28285 . . . . . . 7 ((𝐵 No 𝐵 ≤s 0s ) → (abss𝐵) = ( -us𝐵))
1817ad4ant24 753 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (abss𝐵) = ( -us𝐵))
1918oveq2d 7464 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s (abss𝐵)) = (𝐴 ·s ( -us𝐵)))
20 negs0s 28076 . . . . . . . 8 ( -us ‘ 0s ) = 0s
2115negscld 28087 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ( -us𝐵) ∈ No )
22 simplr 768 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s ≤s 𝐴)
23 simpr 484 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐵 ≤s 0s )
24 0sno 27889 . . . . . . . . . . . . . 14 0s No
2524a1i 11 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s No )
2615, 25slenegd 28098 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐵 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐵)))
2723, 26mpbid 232 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us𝐵))
2820, 27eqbrtrrid 5202 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s ≤s ( -us𝐵))
2914, 21, 22, 28mulsge0d 28190 . . . . . . . . 9 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s ≤s (𝐴 ·s ( -us𝐵)))
3029, 16breqtrd 5192 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s ≤s ( -us ‘(𝐴 ·s 𝐵)))
3120, 30eqbrtrid 5201 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵)))
322adantr 480 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s 𝐵) ∈ No )
3332, 25slenegd 28098 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ((𝐴 ·s 𝐵) ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵))))
3431, 33mpbird 257 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s 𝐵) ≤s 0s )
35 abssnid 28285 . . . . . 6 (((𝐴 ·s 𝐵) ∈ No ∧ (𝐴 ·s 𝐵) ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = ( -us ‘(𝐴 ·s 𝐵)))
362, 34, 35syl2an2r 684 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = ( -us ‘(𝐴 ·s 𝐵)))
3716, 19, 363eqtr4rd 2791 . . . 4 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s (abss𝐵)))
38 sletric 27827 . . . . . 6 (( 0s No 𝐵 No ) → ( 0s ≤s 𝐵𝐵 ≤s 0s ))
3924, 38mpan 689 . . . . 5 (𝐵 No → ( 0s ≤s 𝐵𝐵 ≤s 0s ))
4039ad2antlr 726 . . . 4 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → ( 0s ≤s 𝐵𝐵 ≤s 0s ))
4113, 37, 40mpjaodan 959 . . 3 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s (abss𝐵)))
42 abssid 28283 . . . . 5 ((𝐴 No ∧ 0s ≤s 𝐴) → (abss𝐴) = 𝐴)
4342adantlr 714 . . . 4 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → (abss𝐴) = 𝐴)
4443oveq1d 7463 . . 3 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → ((abss𝐴) ·s (abss𝐵)) = (𝐴 ·s (abss𝐵)))
4541, 44eqtr4d 2783 . 2 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
46 simplll 774 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 𝐴 No )
47 simpllr 775 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 𝐵 No )
4846, 47mulnegs1d 28204 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (( -us𝐴) ·s 𝐵) = ( -us ‘(𝐴 ·s 𝐵)))
4910ad4ant24 753 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (abss𝐵) = 𝐵)
5049oveq2d 7464 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (( -us𝐴) ·s (abss𝐵)) = (( -us𝐴) ·s 𝐵))
511adantr 480 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → (𝐴 ·s 𝐵) ∈ No )
5246negscld 28087 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → ( -us𝐴) ∈ No )
53 simplr 768 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 𝐴 ≤s 0s )
5424a1i 11 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s No )
5546, 54slenegd 28098 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐴)))
5653, 55mpbid 232 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → ( -us ‘ 0s ) ≤s ( -us𝐴))
5720, 56eqbrtrrid 5202 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s ≤s ( -us𝐴))
58 simpr 484 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s ≤s 𝐵)
5952, 47, 57, 58mulsge0d 28190 . . . . . . . . 9 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s ≤s (( -us𝐴) ·s 𝐵))
6059, 48breqtrd 5192 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s ≤s ( -us ‘(𝐴 ·s 𝐵)))
6120, 60eqbrtrid 5201 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → ( -us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵)))
6251adantr 480 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (𝐴 ·s 𝐵) ∈ No )
6362, 54slenegd 28098 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → ((𝐴 ·s 𝐵) ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵))))
6461, 63mpbird 257 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (𝐴 ·s 𝐵) ≤s 0s )
6551, 64, 35syl2an2r 684 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (abss‘(𝐴 ·s 𝐵)) = ( -us ‘(𝐴 ·s 𝐵)))
6648, 50, 653eqtr4rd 2791 . . . 4 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (abss‘(𝐴 ·s 𝐵)) = (( -us𝐴) ·s (abss𝐵)))
67 simplll 774 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 𝐴 No )
68 simpllr 775 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 𝐵 No )
6967, 68mul2negsd 28206 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (( -us𝐴) ·s ( -us𝐵)) = (𝐴 ·s 𝐵))
7017ad4ant24 753 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (abss𝐵) = ( -us𝐵))
7170oveq2d 7464 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (( -us𝐴) ·s (abss𝐵)) = (( -us𝐴) ·s ( -us𝐵)))
7267negscld 28087 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ( -us𝐴) ∈ No )
7368negscld 28087 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ( -us𝐵) ∈ No )
74 simplr 768 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 𝐴 ≤s 0s )
7524a1i 11 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s No )
7667, 75slenegd 28098 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐴)))
7774, 76mpbid 232 . . . . . . . . 9 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us𝐴))
7820, 77eqbrtrrid 5202 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s ≤s ( -us𝐴))
79 simpr 484 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 𝐵 ≤s 0s )
8068, 75slenegd 28098 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (𝐵 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐵)))
8179, 80mpbid 232 . . . . . . . . 9 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us𝐵))
8220, 81eqbrtrrid 5202 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s ≤s ( -us𝐵))
8372, 73, 78, 82mulsge0d 28190 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s ≤s (( -us𝐴) ·s ( -us𝐵)))
8483, 69breqtrd 5192 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s ≤s (𝐴 ·s 𝐵))
8551, 84, 8syl2an2r 684 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s 𝐵))
8669, 71, 853eqtr4rd 2791 . . . 4 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = (( -us𝐴) ·s (abss𝐵)))
8739ad2antlr 726 . . . 4 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → ( 0s ≤s 𝐵𝐵 ≤s 0s ))
8866, 86, 87mpjaodan 959 . . 3 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = (( -us𝐴) ·s (abss𝐵)))
89 abssnid 28285 . . . . 5 ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))
9089oveq1d 7463 . . . 4 ((𝐴 No 𝐴 ≤s 0s ) → ((abss𝐴) ·s (abss𝐵)) = (( -us𝐴) ·s (abss𝐵)))
9190adantlr 714 . . 3 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → ((abss𝐴) ·s (abss𝐵)) = (( -us𝐴) ·s (abss𝐵)))
9288, 91eqtr4d 2783 . 2 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
93 sletric 27827 . . . 4 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
9424, 93mpan 689 . . 3 (𝐴 No → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
9594adantr 480 . 2 ((𝐴 No 𝐵 No ) → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
9645, 92, 95mpjaodan 959 1 ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448   No csur 27702   ≤s csle 27807   0s c0s 27885   -us cnegs 28069   ·s cmuls 28150  absscabss 28279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-abss 28280
This theorem is referenced by:  remulscllem2  28451
  Copyright terms: Public domain W3C validator