MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmuls Structured version   Visualization version   GIF version

Theorem absmuls 28182
Description: Surreal absolute value distributes over multiplication. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
absmuls ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))

Proof of Theorem absmuls
StepHypRef Expression
1 mulscl 28073 . . . . . . 7 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
21adantr 480 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → (𝐴 ·s 𝐵) ∈ No )
3 simplll 774 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 𝐴 No )
4 simpllr 775 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 𝐵 No )
5 simplr 768 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s 𝐴)
6 simpr 484 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s 𝐵)
73, 4, 5, 6mulsge0d 28085 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
8 abssid 28179 . . . . . 6 (((𝐴 ·s 𝐵) ∈ No ∧ 0s ≤s (𝐴 ·s 𝐵)) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s 𝐵))
92, 7, 8syl2an2r 685 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s 𝐵))
10 abssid 28179 . . . . . . 7 ((𝐵 No ∧ 0s ≤s 𝐵) → (abss𝐵) = 𝐵)
1110ad4ant24 754 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (abss𝐵) = 𝐵)
1211oveq2d 7362 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (𝐴 ·s (abss𝐵)) = (𝐴 ·s 𝐵))
139, 12eqtr4d 2769 . . . 4 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s (abss𝐵)))
14 simplll 774 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐴 No )
15 simpllr 775 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐵 No )
1614, 15mulnegs2d 28100 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s ( -us𝐵)) = ( -us ‘(𝐴 ·s 𝐵)))
17 abssnid 28181 . . . . . . 7 ((𝐵 No 𝐵 ≤s 0s ) → (abss𝐵) = ( -us𝐵))
1817ad4ant24 754 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (abss𝐵) = ( -us𝐵))
1918oveq2d 7362 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s (abss𝐵)) = (𝐴 ·s ( -us𝐵)))
20 negs0s 27968 . . . . . . . 8 ( -us ‘ 0s ) = 0s
2115negscld 27979 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ( -us𝐵) ∈ No )
22 simplr 768 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s ≤s 𝐴)
23 simpr 484 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐵 ≤s 0s )
24 0sno 27770 . . . . . . . . . . . . . 14 0s No
2524a1i 11 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s No )
2615, 25slenegd 27990 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐵 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐵)))
2723, 26mpbid 232 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us𝐵))
2820, 27eqbrtrrid 5125 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s ≤s ( -us𝐵))
2914, 21, 22, 28mulsge0d 28085 . . . . . . . . 9 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s ≤s (𝐴 ·s ( -us𝐵)))
3029, 16breqtrd 5115 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s ≤s ( -us ‘(𝐴 ·s 𝐵)))
3120, 30eqbrtrid 5124 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵)))
322adantr 480 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s 𝐵) ∈ No )
3332, 25slenegd 27990 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ((𝐴 ·s 𝐵) ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵))))
3431, 33mpbird 257 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s 𝐵) ≤s 0s )
35 abssnid 28181 . . . . . 6 (((𝐴 ·s 𝐵) ∈ No ∧ (𝐴 ·s 𝐵) ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = ( -us ‘(𝐴 ·s 𝐵)))
362, 34, 35syl2an2r 685 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = ( -us ‘(𝐴 ·s 𝐵)))
3716, 19, 363eqtr4rd 2777 . . . 4 ((((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s (abss𝐵)))
38 sletric 27703 . . . . . 6 (( 0s No 𝐵 No ) → ( 0s ≤s 𝐵𝐵 ≤s 0s ))
3924, 38mpan 690 . . . . 5 (𝐵 No → ( 0s ≤s 𝐵𝐵 ≤s 0s ))
4039ad2antlr 727 . . . 4 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → ( 0s ≤s 𝐵𝐵 ≤s 0s ))
4113, 37, 40mpjaodan 960 . . 3 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s (abss𝐵)))
42 abssid 28179 . . . . 5 ((𝐴 No ∧ 0s ≤s 𝐴) → (abss𝐴) = 𝐴)
4342adantlr 715 . . . 4 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → (abss𝐴) = 𝐴)
4443oveq1d 7361 . . 3 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → ((abss𝐴) ·s (abss𝐵)) = (𝐴 ·s (abss𝐵)))
4541, 44eqtr4d 2769 . 2 (((𝐴 No 𝐵 No ) ∧ 0s ≤s 𝐴) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
46 simplll 774 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 𝐴 No )
47 simpllr 775 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 𝐵 No )
4846, 47mulnegs1d 28099 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (( -us𝐴) ·s 𝐵) = ( -us ‘(𝐴 ·s 𝐵)))
4910ad4ant24 754 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (abss𝐵) = 𝐵)
5049oveq2d 7362 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (( -us𝐴) ·s (abss𝐵)) = (( -us𝐴) ·s 𝐵))
511adantr 480 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → (𝐴 ·s 𝐵) ∈ No )
5246negscld 27979 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → ( -us𝐴) ∈ No )
53 simplr 768 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 𝐴 ≤s 0s )
5424a1i 11 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s No )
5546, 54slenegd 27990 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐴)))
5653, 55mpbid 232 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → ( -us ‘ 0s ) ≤s ( -us𝐴))
5720, 56eqbrtrrid 5125 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s ≤s ( -us𝐴))
58 simpr 484 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s ≤s 𝐵)
5952, 47, 57, 58mulsge0d 28085 . . . . . . . . 9 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s ≤s (( -us𝐴) ·s 𝐵))
6059, 48breqtrd 5115 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → 0s ≤s ( -us ‘(𝐴 ·s 𝐵)))
6120, 60eqbrtrid 5124 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → ( -us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵)))
6251adantr 480 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (𝐴 ·s 𝐵) ∈ No )
6362, 54slenegd 27990 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → ((𝐴 ·s 𝐵) ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵))))
6461, 63mpbird 257 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (𝐴 ·s 𝐵) ≤s 0s )
6551, 64, 35syl2an2r 685 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (abss‘(𝐴 ·s 𝐵)) = ( -us ‘(𝐴 ·s 𝐵)))
6648, 50, 653eqtr4rd 2777 . . . 4 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 0s ≤s 𝐵) → (abss‘(𝐴 ·s 𝐵)) = (( -us𝐴) ·s (abss𝐵)))
67 simplll 774 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 𝐴 No )
68 simpllr 775 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 𝐵 No )
6967, 68mul2negsd 28101 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (( -us𝐴) ·s ( -us𝐵)) = (𝐴 ·s 𝐵))
7017ad4ant24 754 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (abss𝐵) = ( -us𝐵))
7170oveq2d 7362 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (( -us𝐴) ·s (abss𝐵)) = (( -us𝐴) ·s ( -us𝐵)))
7267negscld 27979 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ( -us𝐴) ∈ No )
7368negscld 27979 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ( -us𝐵) ∈ No )
74 simplr 768 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 𝐴 ≤s 0s )
7524a1i 11 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s No )
7667, 75slenegd 27990 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐴)))
7774, 76mpbid 232 . . . . . . . . 9 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us𝐴))
7820, 77eqbrtrrid 5125 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s ≤s ( -us𝐴))
79 simpr 484 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 𝐵 ≤s 0s )
8068, 75slenegd 27990 . . . . . . . . . 10 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (𝐵 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐵)))
8179, 80mpbid 232 . . . . . . . . 9 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ( -us ‘ 0s ) ≤s ( -us𝐵))
8220, 81eqbrtrrid 5125 . . . . . . . 8 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s ≤s ( -us𝐵))
8372, 73, 78, 82mulsge0d 28085 . . . . . . 7 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s ≤s (( -us𝐴) ·s ( -us𝐵)))
8483, 69breqtrd 5115 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → 0s ≤s (𝐴 ·s 𝐵))
8551, 84, 8syl2an2r 685 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s 𝐵))
8669, 71, 853eqtr4rd 2777 . . . 4 ((((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = (( -us𝐴) ·s (abss𝐵)))
8739ad2antlr 727 . . . 4 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → ( 0s ≤s 𝐵𝐵 ≤s 0s ))
8866, 86, 87mpjaodan 960 . . 3 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = (( -us𝐴) ·s (abss𝐵)))
89 abssnid 28181 . . . . 5 ((𝐴 No 𝐴 ≤s 0s ) → (abss𝐴) = ( -us𝐴))
9089oveq1d 7361 . . . 4 ((𝐴 No 𝐴 ≤s 0s ) → ((abss𝐴) ·s (abss𝐵)) = (( -us𝐴) ·s (abss𝐵)))
9190adantlr 715 . . 3 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → ((abss𝐴) ·s (abss𝐵)) = (( -us𝐴) ·s (abss𝐵)))
9288, 91eqtr4d 2769 . 2 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
93 sletric 27703 . . . 4 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
9424, 93mpan 690 . . 3 (𝐴 No → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
9594adantr 480 . 2 ((𝐴 No 𝐵 No ) → ( 0s ≤s 𝐴𝐴 ≤s 0s ))
9645, 92, 95mpjaodan 960 1 ((𝐴 No 𝐵 No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss𝐴) ·s (abss𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346   No csur 27578   ≤s csle 27683   0s c0s 27766   -us cnegs 27961   ·s cmuls 28045  absscabss 28175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-abss 28176
This theorem is referenced by:  remulscllem2  28403
  Copyright terms: Public domain W3C validator