| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldcusp | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| cnfldcusp | ⊢ ℂfld ∈ CUnifSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11126 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | 1 | ne0ii 4297 | . 2 ⊢ ℂ ≠ ∅ |
| 3 | cncms 25272 | . 2 ⊢ ℂfld ∈ CMetSp | |
| 4 | eqid 2729 | . . 3 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
| 5 | 4 | cnflduss 25273 | . 2 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
| 6 | cnfldbas 21284 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | absf 15264 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
| 8 | subf 11384 | . . . . . 6 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 9 | fco 6680 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . . 5 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
| 11 | ffn 6656 | . . . . 5 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
| 12 | fnresdm 6605 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
| 14 | cnfldds 21292 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
| 15 | 14 | reseq1i 5930 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
| 16 | 13, 15 | eqtr3i 2754 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
| 17 | 6, 16, 4 | cmetcusp1 25270 | . 2 ⊢ ((ℂ ≠ ∅ ∧ ℂfld ∈ CMetSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))) → ℂfld ∈ CUnifSp) |
| 18 | 2, 3, 5, 17 | mp3an 1463 | 1 ⊢ ℂfld ∈ CUnifSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 × cxp 5621 ↾ cres 5625 ∘ ccom 5627 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 ℂcc 11026 ℝcr 11027 0cc0 11028 − cmin 11366 abscabs 15160 distcds 17189 metUnifcmetu 21271 ℂfldccnfld 21280 UnifStcuss 24158 CUnifSpccusp 24201 CMetSpccms 25249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-rest 17345 df-topn 17346 df-0g 17364 df-gsum 17365 df-topgen 17366 df-pt 17367 df-prds 17370 df-xrs 17425 df-qtop 17430 df-imas 17431 df-xps 17433 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-mulg 18966 df-cntz 19215 df-cmn 19680 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-metu 21279 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-cld 22923 df-ntr 22924 df-cls 22925 df-nei 23002 df-cn 23131 df-cnp 23132 df-haus 23219 df-cmp 23291 df-tx 23466 df-hmeo 23659 df-fil 23750 df-flim 23843 df-fcls 23845 df-ust 24105 df-utop 24136 df-uss 24161 df-usp 24162 df-cfilu 24191 df-cusp 24202 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24788 df-cfil 25172 df-cmet 25174 df-cms 25252 |
| This theorem is referenced by: cnrrext 33996 |
| Copyright terms: Public domain | W3C validator |