Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem13 Structured version   Visualization version   GIF version

Theorem stirlinglem13 46183
Description: 𝐵 is decreasing and has a lower bound, then it converges. Since 𝐵 is log𝐴, in another theorem it is proven that 𝐴 converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem13.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem13.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem13 𝑑 ∈ ℝ 𝐵𝑑
Distinct variable group:   𝐵,𝑑
Allowed substitution hints:   𝐴(𝑛,𝑑)   𝐵(𝑛)

Proof of Theorem stirlinglem13
Dummy variables 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . 6 𝑦 ∈ V
2 stirlinglem13.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
32elrnmpt 5897 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛))))
41, 3ax-mp 5 . . . . 5 (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)))
5 simpr 484 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 = (log‘(𝐴𝑛)))
6 stirlinglem13.1 . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
76stirlinglem2 46172 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
87relogcld 26559 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℝ)
98adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → (log‘(𝐴𝑛)) ∈ ℝ)
105, 9eqeltrd 2831 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 ∈ ℝ)
1110rexlimiva 3125 . . . . 5 (∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)) → 𝑦 ∈ ℝ)
124, 11sylbi 217 . . . 4 (𝑦 ∈ ran 𝐵𝑦 ∈ ℝ)
1312ssriv 3933 . . 3 ran 𝐵 ⊆ ℝ
14 1nn 12136 . . . . . 6 1 ∈ ℕ
156stirlinglem2 46172 . . . . . . . 8 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
16 relogcl 26511 . . . . . . . 8 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
1714, 15, 16mp2b 10 . . . . . . 7 (log‘(𝐴‘1)) ∈ ℝ
18 nfcv 2894 . . . . . . . 8 𝑛1
19 nfcv 2894 . . . . . . . . 9 𝑛log
20 nfmpt1 5188 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
216, 20nfcxfr 2892 . . . . . . . . . 10 𝑛𝐴
2221, 18nffv 6832 . . . . . . . . 9 𝑛(𝐴‘1)
2319, 22nffv 6832 . . . . . . . 8 𝑛(log‘(𝐴‘1))
24 2fveq3 6827 . . . . . . . 8 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
2518, 23, 24, 2fvmptf 6950 . . . . . . 7 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
2614, 17, 25mp2an 692 . . . . . 6 (𝐵‘1) = (log‘(𝐴‘1))
27 2fveq3 6827 . . . . . . 7 (𝑗 = 1 → (log‘(𝐴𝑗)) = (log‘(𝐴‘1)))
2827rspceeqv 3595 . . . . . 6 ((1 ∈ ℕ ∧ (𝐵‘1) = (log‘(𝐴‘1))) → ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
2914, 26, 28mp2an 692 . . . . 5 𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))
3026, 17eqeltri 2827 . . . . . 6 (𝐵‘1) ∈ ℝ
31 nfcv 2894 . . . . . . . . 9 𝑗(log‘(𝐴𝑛))
32 nfcv 2894 . . . . . . . . . . 11 𝑛𝑗
3321, 32nffv 6832 . . . . . . . . . 10 𝑛(𝐴𝑗)
3419, 33nffv 6832 . . . . . . . . 9 𝑛(log‘(𝐴𝑗))
35 2fveq3 6827 . . . . . . . . 9 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
3631, 34, 35cbvmpt 5191 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
372, 36eqtri 2754 . . . . . . 7 𝐵 = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
3837elrnmpt 5897 . . . . . 6 ((𝐵‘1) ∈ ℝ → ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))))
3930, 38ax-mp 5 . . . . 5 ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
4029, 39mpbir 231 . . . 4 (𝐵‘1) ∈ ran 𝐵
4140ne0ii 4291 . . 3 ran 𝐵 ≠ ∅
42 4re 12209 . . . . . . 7 4 ∈ ℝ
43 4ne0 12233 . . . . . . 7 4 ≠ 0
4442, 43rereccli 11886 . . . . . 6 (1 / 4) ∈ ℝ
4530, 44resubcli 11423 . . . . 5 ((𝐵‘1) − (1 / 4)) ∈ ℝ
46 eqid 2731 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
476, 2, 46stirlinglem12 46182 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗))
4847rgen 3049 . . . . 5 𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)
49 breq1 5092 . . . . . . 7 (𝑥 = ((𝐵‘1) − (1 / 4)) → (𝑥 ≤ (𝐵𝑗) ↔ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5049ralbidv 3155 . . . . . 6 (𝑥 = ((𝐵‘1) − (1 / 4)) → (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ↔ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5150rspcev 3572 . . . . 5 ((((𝐵‘1) − (1 / 4)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
5245, 48, 51mp2an 692 . . . 4 𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
53 simpr 484 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑦 ∈ ran 𝐵)
548rgen 3049 . . . . . . . . 9 𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ
552fnmpt 6621 . . . . . . . . 9 (∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ → 𝐵 Fn ℕ)
56 fvelrnb 6882 . . . . . . . . 9 (𝐵 Fn ℕ → (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦))
5754, 55, 56mp2b 10 . . . . . . . 8 (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
5853, 57sylib 218 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
59 nfra1 3256 . . . . . . . . 9 𝑗𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
60 nfv 1915 . . . . . . . . 9 𝑗 𝑦 ∈ ran 𝐵
6159, 60nfan 1900 . . . . . . . 8 𝑗(∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵)
62 nfv 1915 . . . . . . . 8 𝑗 𝑥𝑦
63 simp1l 1198 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
64 simp2 1137 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑗 ∈ ℕ)
65 rsp 3220 . . . . . . . . . . 11 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → (𝑗 ∈ ℕ → 𝑥 ≤ (𝐵𝑗)))
6663, 64, 65sylc 65 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥 ≤ (𝐵𝑗))
67 simp3 1138 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → (𝐵𝑗) = 𝑦)
6866, 67breqtrd 5115 . . . . . . . . 9 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥𝑦)
69683exp 1119 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (𝑗 ∈ ℕ → ((𝐵𝑗) = 𝑦𝑥𝑦)))
7061, 62, 69rexlimd 3239 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦𝑥𝑦))
7158, 70mpd 15 . . . . . 6 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑥𝑦)
7271ralrimiva 3124 . . . . 5 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7372reximi 3070 . . . 4 (∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7452, 73ax-mp 5 . . 3 𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦
75 infrecl 12104 . . 3 ((ran 𝐵 ⊆ ℝ ∧ ran 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦) → inf(ran 𝐵, ℝ, < ) ∈ ℝ)
7613, 41, 74, 75mp3an 1463 . 2 inf(ran 𝐵, ℝ, < ) ∈ ℝ
77 nnuz 12775 . . . 4 ℕ = (ℤ‘1)
78 1zzd 12503 . . . 4 (⊤ → 1 ∈ ℤ)
792, 8fmpti 7045 . . . . 5 𝐵:ℕ⟶ℝ
8079a1i 11 . . . 4 (⊤ → 𝐵:ℕ⟶ℝ)
81 peano2nn 12137 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
826a1i 11 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
83 simpr 484 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → 𝑛 = (𝑗 + 1))
8483fveq2d 6826 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (!‘𝑛) = (!‘(𝑗 + 1)))
8583oveq2d 7362 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (2 · 𝑛) = (2 · (𝑗 + 1)))
8685fveq2d 6826 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (√‘(2 · 𝑛)) = (√‘(2 · (𝑗 + 1))))
8783oveq1d 7361 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (𝑛 / e) = ((𝑗 + 1) / e))
8887, 83oveq12d 7364 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((𝑛 / e)↑𝑛) = (((𝑗 + 1) / e)↑(𝑗 + 1)))
8986, 88oveq12d 7364 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))))
9084, 89oveq12d 7364 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
9181nnnn0d 12442 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
92 faccl 14190 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℕ0 → (!‘(𝑗 + 1)) ∈ ℕ)
93 nncn 12133 . . . . . . . . . . . . 13 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
9491, 92, 933syl 18 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
95 2cnd 12203 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 2 ∈ ℂ)
96 nncn 12133 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
97 1cnd 11107 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 1 ∈ ℂ)
9896, 97addcld 11131 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
9995, 98mulcld 11132 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℂ)
10099sqrtcld 15347 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℂ)
101 ere 15996 . . . . . . . . . . . . . . . . 17 e ∈ ℝ
102101recni 11126 . . . . . . . . . . . . . . . 16 e ∈ ℂ
103102a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ∈ ℂ)
104 0re 11114 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
105 epos 16116 . . . . . . . . . . . . . . . . 17 0 < e
106104, 105gtneii 11225 . . . . . . . . . . . . . . . 16 e ≠ 0
107106a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ≠ 0)
10898, 103, 107divcld 11897 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℂ)
109108, 91expcld 14053 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℂ)
110100, 109mulcld 11132 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℂ)
111 2rp 12895 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
112111a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
113 nnre 12132 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
114104a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ∈ ℝ)
115 1red 11113 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ∈ ℝ)
116 0le1 11640 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≤ 1)
118 nnge1 12153 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
119114, 115, 113, 117, 118letrd 11270 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 0 ≤ 𝑗)
120113, 119ge0p1rpd 12964 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ+)
121112, 120rpmulcld 12950 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℝ+)
122121sqrtgt0d 15320 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < (√‘(2 · (𝑗 + 1))))
123122gt0ne0d 11681 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ≠ 0)
12481nnne0d 12175 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
12598, 103, 124, 107divne0d 11913 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ≠ 0)
126 nnz 12489 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
127126peano2zd 12580 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℤ)
128108, 125, 127expne0d 14059 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ≠ 0)
129100, 109, 123, 128mulne0d 11769 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ≠ 0)
13094, 110, 129divcld 11897 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℂ)
13182, 90, 81, 130fvmptd 6936 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
132 nnrp 12902 . . . . . . . . . . . 12 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
13391, 92, 1323syl 18 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
134121rpsqrtcld 15319 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℝ+)
135 epr 16117 . . . . . . . . . . . . . . 15 e ∈ ℝ+
136135a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → e ∈ ℝ+)
137120, 136rpdivcld 12951 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℝ+)
138137, 127rpexpcld 14154 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℝ+)
139134, 138rpmulcld 12950 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℝ+)
140133, 139rpdivcld 12951 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℝ+)
141131, 140eqeltrd 2831 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
142141relogcld 26559 . . . . . . . 8 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
143 nfcv 2894 . . . . . . . . 9 𝑛(𝑗 + 1)
14421, 143nffv 6832 . . . . . . . . . 10 𝑛(𝐴‘(𝑗 + 1))
14519, 144nffv 6832 . . . . . . . . 9 𝑛(log‘(𝐴‘(𝑗 + 1)))
146 2fveq3 6827 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
147143, 145, 146, 2fvmptf 6950 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
14881, 142, 147syl2anc 584 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
149148, 142eqeltrd 2831 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
15079ffvelcdmi 7016 . . . . . 6 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
151 eqid 2731 . . . . . . 7 (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧)))) = (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧))))
1526, 2, 151stirlinglem11 46181 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) < (𝐵𝑗))
153149, 150, 152ltled 11261 . . . . 5 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
154153adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
15552a1i 11 . . . 4 (⊤ → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
15677, 78, 80, 154, 155climinf 45705 . . 3 (⊤ → 𝐵 ⇝ inf(ran 𝐵, ℝ, < ))
157156mptru 1548 . 2 𝐵 ⇝ inf(ran 𝐵, ℝ, < )
158 breq2 5093 . . 3 (𝑑 = inf(ran 𝐵, ℝ, < ) → (𝐵𝑑𝐵 ⇝ inf(ran 𝐵, ℝ, < )))
159158rspcev 3572 . 2 ((inf(ran 𝐵, ℝ, < ) ∈ ℝ ∧ 𝐵 ⇝ inf(ran 𝐵, ℝ, < )) → ∃𝑑 ∈ ℝ 𝐵𝑑)
16076, 157, 159mp2an 692 1 𝑑 ∈ ℝ 𝐵𝑑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  cmpt 5170  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  infcinf 9325  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  4c4 12182  0cn0 12381  +crp 12890  cexp 13968  !cfa 14180  csqrt 15140  cli 15391  eceu 15969  logclog 26490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-ulm 26313  df-log 26492  df-cxp 26493
This theorem is referenced by:  stirlinglem14  46184
  Copyright terms: Public domain W3C validator