Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem13 Structured version   Visualization version   GIF version

Theorem stirlinglem13 46082
Description: 𝐵 is decreasing and has a lower bound, then it converges. Since 𝐵 is log𝐴, in another theorem it is proven that 𝐴 converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem13.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem13.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem13 𝑑 ∈ ℝ 𝐵𝑑
Distinct variable group:   𝐵,𝑑
Allowed substitution hints:   𝐴(𝑛,𝑑)   𝐵(𝑛)

Proof of Theorem stirlinglem13
Dummy variables 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . . . 6 𝑦 ∈ V
2 stirlinglem13.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
32elrnmpt 5943 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛))))
41, 3ax-mp 5 . . . . 5 (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)))
5 simpr 484 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 = (log‘(𝐴𝑛)))
6 stirlinglem13.1 . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
76stirlinglem2 46071 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
87relogcld 26589 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℝ)
98adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → (log‘(𝐴𝑛)) ∈ ℝ)
105, 9eqeltrd 2835 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 ∈ ℝ)
1110rexlimiva 3134 . . . . 5 (∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)) → 𝑦 ∈ ℝ)
124, 11sylbi 217 . . . 4 (𝑦 ∈ ran 𝐵𝑦 ∈ ℝ)
1312ssriv 3967 . . 3 ran 𝐵 ⊆ ℝ
14 1nn 12256 . . . . . 6 1 ∈ ℕ
156stirlinglem2 46071 . . . . . . . 8 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
16 relogcl 26541 . . . . . . . 8 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
1714, 15, 16mp2b 10 . . . . . . 7 (log‘(𝐴‘1)) ∈ ℝ
18 nfcv 2899 . . . . . . . 8 𝑛1
19 nfcv 2899 . . . . . . . . 9 𝑛log
20 nfmpt1 5225 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
216, 20nfcxfr 2897 . . . . . . . . . 10 𝑛𝐴
2221, 18nffv 6891 . . . . . . . . 9 𝑛(𝐴‘1)
2319, 22nffv 6891 . . . . . . . 8 𝑛(log‘(𝐴‘1))
24 2fveq3 6886 . . . . . . . 8 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
2518, 23, 24, 2fvmptf 7012 . . . . . . 7 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
2614, 17, 25mp2an 692 . . . . . 6 (𝐵‘1) = (log‘(𝐴‘1))
27 2fveq3 6886 . . . . . . 7 (𝑗 = 1 → (log‘(𝐴𝑗)) = (log‘(𝐴‘1)))
2827rspceeqv 3629 . . . . . 6 ((1 ∈ ℕ ∧ (𝐵‘1) = (log‘(𝐴‘1))) → ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
2914, 26, 28mp2an 692 . . . . 5 𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))
3026, 17eqeltri 2831 . . . . . 6 (𝐵‘1) ∈ ℝ
31 nfcv 2899 . . . . . . . . 9 𝑗(log‘(𝐴𝑛))
32 nfcv 2899 . . . . . . . . . . 11 𝑛𝑗
3321, 32nffv 6891 . . . . . . . . . 10 𝑛(𝐴𝑗)
3419, 33nffv 6891 . . . . . . . . 9 𝑛(log‘(𝐴𝑗))
35 2fveq3 6886 . . . . . . . . 9 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
3631, 34, 35cbvmpt 5228 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
372, 36eqtri 2759 . . . . . . 7 𝐵 = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
3837elrnmpt 5943 . . . . . 6 ((𝐵‘1) ∈ ℝ → ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))))
3930, 38ax-mp 5 . . . . 5 ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
4029, 39mpbir 231 . . . 4 (𝐵‘1) ∈ ran 𝐵
4140ne0ii 4324 . . 3 ran 𝐵 ≠ ∅
42 4re 12329 . . . . . . 7 4 ∈ ℝ
43 4ne0 12353 . . . . . . 7 4 ≠ 0
4442, 43rereccli 12011 . . . . . 6 (1 / 4) ∈ ℝ
4530, 44resubcli 11550 . . . . 5 ((𝐵‘1) − (1 / 4)) ∈ ℝ
46 eqid 2736 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
476, 2, 46stirlinglem12 46081 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗))
4847rgen 3054 . . . . 5 𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)
49 breq1 5127 . . . . . . 7 (𝑥 = ((𝐵‘1) − (1 / 4)) → (𝑥 ≤ (𝐵𝑗) ↔ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5049ralbidv 3164 . . . . . 6 (𝑥 = ((𝐵‘1) − (1 / 4)) → (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ↔ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5150rspcev 3606 . . . . 5 ((((𝐵‘1) − (1 / 4)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
5245, 48, 51mp2an 692 . . . 4 𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
53 simpr 484 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑦 ∈ ran 𝐵)
548rgen 3054 . . . . . . . . 9 𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ
552fnmpt 6683 . . . . . . . . 9 (∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ → 𝐵 Fn ℕ)
56 fvelrnb 6944 . . . . . . . . 9 (𝐵 Fn ℕ → (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦))
5754, 55, 56mp2b 10 . . . . . . . 8 (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
5853, 57sylib 218 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
59 nfra1 3270 . . . . . . . . 9 𝑗𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
60 nfv 1914 . . . . . . . . 9 𝑗 𝑦 ∈ ran 𝐵
6159, 60nfan 1899 . . . . . . . 8 𝑗(∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵)
62 nfv 1914 . . . . . . . 8 𝑗 𝑥𝑦
63 simp1l 1198 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
64 simp2 1137 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑗 ∈ ℕ)
65 rsp 3234 . . . . . . . . . . 11 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → (𝑗 ∈ ℕ → 𝑥 ≤ (𝐵𝑗)))
6663, 64, 65sylc 65 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥 ≤ (𝐵𝑗))
67 simp3 1138 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → (𝐵𝑗) = 𝑦)
6866, 67breqtrd 5150 . . . . . . . . 9 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥𝑦)
69683exp 1119 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (𝑗 ∈ ℕ → ((𝐵𝑗) = 𝑦𝑥𝑦)))
7061, 62, 69rexlimd 3253 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦𝑥𝑦))
7158, 70mpd 15 . . . . . 6 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑥𝑦)
7271ralrimiva 3133 . . . . 5 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7372reximi 3075 . . . 4 (∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7452, 73ax-mp 5 . . 3 𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦
75 infrecl 12229 . . 3 ((ran 𝐵 ⊆ ℝ ∧ ran 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦) → inf(ran 𝐵, ℝ, < ) ∈ ℝ)
7613, 41, 74, 75mp3an 1463 . 2 inf(ran 𝐵, ℝ, < ) ∈ ℝ
77 nnuz 12900 . . . 4 ℕ = (ℤ‘1)
78 1zzd 12628 . . . 4 (⊤ → 1 ∈ ℤ)
792, 8fmpti 7107 . . . . 5 𝐵:ℕ⟶ℝ
8079a1i 11 . . . 4 (⊤ → 𝐵:ℕ⟶ℝ)
81 peano2nn 12257 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
826a1i 11 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
83 simpr 484 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → 𝑛 = (𝑗 + 1))
8483fveq2d 6885 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (!‘𝑛) = (!‘(𝑗 + 1)))
8583oveq2d 7426 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (2 · 𝑛) = (2 · (𝑗 + 1)))
8685fveq2d 6885 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (√‘(2 · 𝑛)) = (√‘(2 · (𝑗 + 1))))
8783oveq1d 7425 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (𝑛 / e) = ((𝑗 + 1) / e))
8887, 83oveq12d 7428 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((𝑛 / e)↑𝑛) = (((𝑗 + 1) / e)↑(𝑗 + 1)))
8986, 88oveq12d 7428 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))))
9084, 89oveq12d 7428 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
9181nnnn0d 12567 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
92 faccl 14306 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℕ0 → (!‘(𝑗 + 1)) ∈ ℕ)
93 nncn 12253 . . . . . . . . . . . . 13 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
9491, 92, 933syl 18 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
95 2cnd 12323 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 2 ∈ ℂ)
96 nncn 12253 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
97 1cnd 11235 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 1 ∈ ℂ)
9896, 97addcld 11259 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
9995, 98mulcld 11260 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℂ)
10099sqrtcld 15461 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℂ)
101 ere 16110 . . . . . . . . . . . . . . . . 17 e ∈ ℝ
102101recni 11254 . . . . . . . . . . . . . . . 16 e ∈ ℂ
103102a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ∈ ℂ)
104 0re 11242 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
105 epos 16230 . . . . . . . . . . . . . . . . 17 0 < e
106104, 105gtneii 11352 . . . . . . . . . . . . . . . 16 e ≠ 0
107106a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ≠ 0)
10898, 103, 107divcld 12022 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℂ)
109108, 91expcld 14169 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℂ)
110100, 109mulcld 11260 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℂ)
111 2rp 13018 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
112111a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
113 nnre 12252 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
114104a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ∈ ℝ)
115 1red 11241 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ∈ ℝ)
116 0le1 11765 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≤ 1)
118 nnge1 12273 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
119114, 115, 113, 117, 118letrd 11397 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 0 ≤ 𝑗)
120113, 119ge0p1rpd 13086 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ+)
121112, 120rpmulcld 13072 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℝ+)
122121sqrtgt0d 15436 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < (√‘(2 · (𝑗 + 1))))
123122gt0ne0d 11806 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ≠ 0)
12481nnne0d 12295 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
12598, 103, 124, 107divne0d 12038 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ≠ 0)
126 nnz 12614 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
127126peano2zd 12705 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℤ)
128108, 125, 127expne0d 14175 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ≠ 0)
129100, 109, 123, 128mulne0d 11894 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ≠ 0)
13094, 110, 129divcld 12022 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℂ)
13182, 90, 81, 130fvmptd 6998 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
132 nnrp 13025 . . . . . . . . . . . 12 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
13391, 92, 1323syl 18 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
134121rpsqrtcld 15435 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℝ+)
135 epr 16231 . . . . . . . . . . . . . . 15 e ∈ ℝ+
136135a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → e ∈ ℝ+)
137120, 136rpdivcld 13073 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℝ+)
138137, 127rpexpcld 14270 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℝ+)
139134, 138rpmulcld 13072 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℝ+)
140133, 139rpdivcld 13073 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℝ+)
141131, 140eqeltrd 2835 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
142141relogcld 26589 . . . . . . . 8 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
143 nfcv 2899 . . . . . . . . 9 𝑛(𝑗 + 1)
14421, 143nffv 6891 . . . . . . . . . 10 𝑛(𝐴‘(𝑗 + 1))
14519, 144nffv 6891 . . . . . . . . 9 𝑛(log‘(𝐴‘(𝑗 + 1)))
146 2fveq3 6886 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
147143, 145, 146, 2fvmptf 7012 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
14881, 142, 147syl2anc 584 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
149148, 142eqeltrd 2835 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
15079ffvelcdmi 7078 . . . . . 6 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
151 eqid 2736 . . . . . . 7 (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧)))) = (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧))))
1526, 2, 151stirlinglem11 46080 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) < (𝐵𝑗))
153149, 150, 152ltled 11388 . . . . 5 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
154153adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
15552a1i 11 . . . 4 (⊤ → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
15677, 78, 80, 154, 155climinf 45602 . . 3 (⊤ → 𝐵 ⇝ inf(ran 𝐵, ℝ, < ))
157156mptru 1547 . 2 𝐵 ⇝ inf(ran 𝐵, ℝ, < )
158 breq2 5128 . . 3 (𝑑 = inf(ran 𝐵, ℝ, < ) → (𝐵𝑑𝐵 ⇝ inf(ran 𝐵, ℝ, < )))
159158rspcev 3606 . 2 ((inf(ran 𝐵, ℝ, < ) ∈ ℝ ∧ 𝐵 ⇝ inf(ran 𝐵, ℝ, < )) → ∃𝑑 ∈ ℝ 𝐵𝑑)
16076, 157, 159mp2an 692 1 𝑑 ∈ ℝ 𝐵𝑑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  wss 3931  c0 4313   class class class wbr 5124  cmpt 5206  ran crn 5660   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  infcinf 9458  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  4c4 12302  0cn0 12506  +crp 13013  cexp 14084  !cfa 14296  csqrt 15257  cli 15505  eceu 16083  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-dvds 16278  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-ulm 26343  df-log 26522  df-cxp 26523
This theorem is referenced by:  stirlinglem14  46083
  Copyright terms: Public domain W3C validator