Step | Hyp | Ref
| Expression |
1 | | vex 3426 |
. . . . . 6
⊢ 𝑦 ∈ V |
2 | | stirlinglem13.2 |
. . . . . . 7
⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) |
3 | 2 | elrnmpt 5854 |
. . . . . 6
⊢ (𝑦 ∈ V → (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴‘𝑛)))) |
4 | 1, 3 | ax-mp 5 |
. . . . 5
⊢ (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴‘𝑛))) |
5 | | simpr 484 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴‘𝑛))) → 𝑦 = (log‘(𝐴‘𝑛))) |
6 | | stirlinglem13.1 |
. . . . . . . . . 10
⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)))) |
7 | 6 | stirlinglem2 43506 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (𝐴‘𝑛) ∈
ℝ+) |
8 | 7 | relogcld 25683 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(log‘(𝐴‘𝑛)) ∈
ℝ) |
9 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴‘𝑛))) → (log‘(𝐴‘𝑛)) ∈ ℝ) |
10 | 5, 9 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴‘𝑛))) → 𝑦 ∈ ℝ) |
11 | 10 | rexlimiva 3209 |
. . . . 5
⊢
(∃𝑛 ∈
ℕ 𝑦 =
(log‘(𝐴‘𝑛)) → 𝑦 ∈ ℝ) |
12 | 4, 11 | sylbi 216 |
. . . 4
⊢ (𝑦 ∈ ran 𝐵 → 𝑦 ∈ ℝ) |
13 | 12 | ssriv 3921 |
. . 3
⊢ ran 𝐵 ⊆
ℝ |
14 | | 1nn 11914 |
. . . . . 6
⊢ 1 ∈
ℕ |
15 | 6 | stirlinglem2 43506 |
. . . . . . . 8
⊢ (1 ∈
ℕ → (𝐴‘1)
∈ ℝ+) |
16 | | relogcl 25636 |
. . . . . . . 8
⊢ ((𝐴‘1) ∈
ℝ+ → (log‘(𝐴‘1)) ∈ ℝ) |
17 | 14, 15, 16 | mp2b 10 |
. . . . . . 7
⊢
(log‘(𝐴‘1)) ∈ ℝ |
18 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑛1 |
19 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑛log |
20 | | nfmpt1 5178 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)))) |
21 | 6, 20 | nfcxfr 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝐴 |
22 | 21, 18 | nffv 6766 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝐴‘1) |
23 | 19, 22 | nffv 6766 |
. . . . . . . 8
⊢
Ⅎ𝑛(log‘(𝐴‘1)) |
24 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑛 = 1 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘1))) |
25 | 18, 23, 24, 2 | fvmptf 6878 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1))) |
26 | 14, 17, 25 | mp2an 688 |
. . . . . 6
⊢ (𝐵‘1) = (log‘(𝐴‘1)) |
27 | | 2fveq3 6761 |
. . . . . . 7
⊢ (𝑗 = 1 → (log‘(𝐴‘𝑗)) = (log‘(𝐴‘1))) |
28 | 27 | rspceeqv 3567 |
. . . . . 6
⊢ ((1
∈ ℕ ∧ (𝐵‘1) = (log‘(𝐴‘1))) → ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴‘𝑗))) |
29 | 14, 26, 28 | mp2an 688 |
. . . . 5
⊢
∃𝑗 ∈
ℕ (𝐵‘1) =
(log‘(𝐴‘𝑗)) |
30 | 26, 17 | eqeltri 2835 |
. . . . . 6
⊢ (𝐵‘1) ∈
ℝ |
31 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑗(log‘(𝐴‘𝑛)) |
32 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝑗 |
33 | 21, 32 | nffv 6766 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝐴‘𝑗) |
34 | 19, 33 | nffv 6766 |
. . . . . . . . 9
⊢
Ⅎ𝑛(log‘(𝐴‘𝑗)) |
35 | | 2fveq3 6761 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘𝑗))) |
36 | 31, 34, 35 | cbvmpt 5181 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦
(log‘(𝐴‘𝑛))) = (𝑗 ∈ ℕ ↦ (log‘(𝐴‘𝑗))) |
37 | 2, 36 | eqtri 2766 |
. . . . . . 7
⊢ 𝐵 = (𝑗 ∈ ℕ ↦ (log‘(𝐴‘𝑗))) |
38 | 37 | elrnmpt 5854 |
. . . . . 6
⊢ ((𝐵‘1) ∈ ℝ →
((𝐵‘1) ∈ ran
𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴‘𝑗)))) |
39 | 30, 38 | ax-mp 5 |
. . . . 5
⊢ ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴‘𝑗))) |
40 | 29, 39 | mpbir 230 |
. . . 4
⊢ (𝐵‘1) ∈ ran 𝐵 |
41 | 40 | ne0ii 4268 |
. . 3
⊢ ran 𝐵 ≠ ∅ |
42 | | 4re 11987 |
. . . . . . 7
⊢ 4 ∈
ℝ |
43 | | 4ne0 12011 |
. . . . . . 7
⊢ 4 ≠
0 |
44 | 42, 43 | rereccli 11670 |
. . . . . 6
⊢ (1 / 4)
∈ ℝ |
45 | 30, 44 | resubcli 11213 |
. . . . 5
⊢ ((𝐵‘1) − (1 / 4))
∈ ℝ |
46 | | eqid 2738 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (1 /
(𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) |
47 | 6, 2, 46 | stirlinglem12 43516 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤
(𝐵‘𝑗)) |
48 | 47 | rgen 3073 |
. . . . 5
⊢
∀𝑗 ∈
ℕ ((𝐵‘1)
− (1 / 4)) ≤ (𝐵‘𝑗) |
49 | | breq1 5073 |
. . . . . . 7
⊢ (𝑥 = ((𝐵‘1) − (1 / 4)) → (𝑥 ≤ (𝐵‘𝑗) ↔ ((𝐵‘1) − (1 / 4)) ≤ (𝐵‘𝑗))) |
50 | 49 | ralbidv 3120 |
. . . . . 6
⊢ (𝑥 = ((𝐵‘1) − (1 / 4)) →
(∀𝑗 ∈ ℕ
𝑥 ≤ (𝐵‘𝑗) ↔ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵‘𝑗))) |
51 | 50 | rspcev 3552 |
. . . . 5
⊢ ((((𝐵‘1) − (1 / 4))
∈ ℝ ∧ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵‘𝑗)) |
52 | 45, 48, 51 | mp2an 688 |
. . . 4
⊢
∃𝑥 ∈
ℝ ∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) |
53 | | simpr 484 |
. . . . . . . 8
⊢
((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑦 ∈ ran 𝐵) |
54 | 8 | rgen 3073 |
. . . . . . . . 9
⊢
∀𝑛 ∈
ℕ (log‘(𝐴‘𝑛)) ∈ ℝ |
55 | 2 | fnmpt 6557 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℕ (log‘(𝐴‘𝑛)) ∈ ℝ → 𝐵 Fn ℕ) |
56 | | fvelrnb 6812 |
. . . . . . . . 9
⊢ (𝐵 Fn ℕ → (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘𝑗) = 𝑦)) |
57 | 54, 55, 56 | mp2b 10 |
. . . . . . . 8
⊢ (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘𝑗) = 𝑦) |
58 | 53, 57 | sylib 217 |
. . . . . . 7
⊢
((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) → ∃𝑗 ∈ ℕ (𝐵‘𝑗) = 𝑦) |
59 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑗∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵‘𝑗) |
60 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑗 𝑦 ∈ ran 𝐵 |
61 | 59, 60 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑗(∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) |
62 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑥 ≤ 𝑦 |
63 | | simp1l 1195 |
. . . . . . . . . . 11
⊢
(((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵‘𝑗) = 𝑦) → ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵‘𝑗)) |
64 | | simp2 1135 |
. . . . . . . . . . 11
⊢
(((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵‘𝑗) = 𝑦) → 𝑗 ∈ ℕ) |
65 | | rsp 3129 |
. . . . . . . . . . 11
⊢
(∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) → (𝑗 ∈ ℕ → 𝑥 ≤ (𝐵‘𝑗))) |
66 | 63, 64, 65 | sylc 65 |
. . . . . . . . . 10
⊢
(((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵‘𝑗) = 𝑦) → 𝑥 ≤ (𝐵‘𝑗)) |
67 | | simp3 1136 |
. . . . . . . . . 10
⊢
(((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵‘𝑗) = 𝑦) → (𝐵‘𝑗) = 𝑦) |
68 | 66, 67 | breqtrd 5096 |
. . . . . . . . 9
⊢
(((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵‘𝑗) = 𝑦) → 𝑥 ≤ 𝑦) |
69 | 68 | 3exp 1117 |
. . . . . . . 8
⊢
((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) → (𝑗 ∈ ℕ → ((𝐵‘𝑗) = 𝑦 → 𝑥 ≤ 𝑦))) |
70 | 61, 62, 69 | rexlimd 3245 |
. . . . . . 7
⊢
((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) → (∃𝑗 ∈ ℕ (𝐵‘𝑗) = 𝑦 → 𝑥 ≤ 𝑦)) |
71 | 58, 70 | mpd 15 |
. . . . . 6
⊢
((∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑥 ≤ 𝑦) |
72 | 71 | ralrimiva 3107 |
. . . . 5
⊢
(∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) → ∀𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦) |
73 | 72 | reximi 3174 |
. . . 4
⊢
(∃𝑥 ∈
ℝ ∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦) |
74 | 52, 73 | ax-mp 5 |
. . 3
⊢
∃𝑥 ∈
ℝ ∀𝑦 ∈
ran 𝐵 𝑥 ≤ 𝑦 |
75 | | infrecl 11887 |
. . 3
⊢ ((ran
𝐵 ⊆ ℝ ∧ ran
𝐵 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦) → inf(ran 𝐵, ℝ, < ) ∈
ℝ) |
76 | 13, 41, 74, 75 | mp3an 1459 |
. 2
⊢ inf(ran
𝐵, ℝ, < ) ∈
ℝ |
77 | | nnuz 12550 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
78 | | 1zzd 12281 |
. . . 4
⊢ (⊤
→ 1 ∈ ℤ) |
79 | 2, 8 | fmpti 6968 |
. . . . 5
⊢ 𝐵:ℕ⟶ℝ |
80 | 79 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝐵:ℕ⟶ℝ) |
81 | | peano2nn 11915 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
82 | 6 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛))))) |
83 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → 𝑛 = (𝑗 + 1)) |
84 | 83 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (!‘𝑛) = (!‘(𝑗 + 1))) |
85 | 83 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (2 · 𝑛) = (2 · (𝑗 + 1))) |
86 | 85 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (√‘(2 ·
𝑛)) = (√‘(2
· (𝑗 +
1)))) |
87 | 83 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (𝑛 / e) = ((𝑗 + 1) / e)) |
88 | 87, 83 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((𝑛 / e)↑𝑛) = (((𝑗 + 1) / e)↑(𝑗 + 1))) |
89 | 86, 88 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) |
90 | 84, 89 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))))) |
91 | 81 | nnnn0d 12223 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ0) |
92 | | faccl 13925 |
. . . . . . . . . . . . 13
⊢ ((𝑗 + 1) ∈ ℕ0
→ (!‘(𝑗 + 1))
∈ ℕ) |
93 | | nncn 11911 |
. . . . . . . . . . . . 13
⊢
((!‘(𝑗 + 1))
∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ) |
94 | 91, 92, 93 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ →
(!‘(𝑗 + 1)) ∈
ℂ) |
95 | | 2cnd 11981 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 2 ∈
ℂ) |
96 | | nncn 11911 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
97 | | 1cnd 10901 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 1 ∈
ℂ) |
98 | 96, 97 | addcld 10925 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℂ) |
99 | 95, 98 | mulcld 10926 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (2
· (𝑗 + 1)) ∈
ℂ) |
100 | 99 | sqrtcld 15077 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ →
(√‘(2 · (𝑗 + 1))) ∈ ℂ) |
101 | | ere 15726 |
. . . . . . . . . . . . . . . . 17
⊢ e ∈
ℝ |
102 | 101 | recni 10920 |
. . . . . . . . . . . . . . . 16
⊢ e ∈
ℂ |
103 | 102 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → e ∈
ℂ) |
104 | | 0re 10908 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
105 | | epos 15844 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
e |
106 | 104, 105 | gtneii 11017 |
. . . . . . . . . . . . . . . 16
⊢ e ≠
0 |
107 | 106 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → e ≠
0) |
108 | 98, 103, 107 | divcld 11681 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈
ℂ) |
109 | 108, 91 | expcld 13792 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈
ℂ) |
110 | 100, 109 | mulcld 10926 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ →
((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℂ) |
111 | | 2rp 12664 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ+ |
112 | 111 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 2 ∈
ℝ+) |
113 | | nnre 11910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
114 | 104 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → 0 ∈
ℝ) |
115 | | 1red 10907 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → 1 ∈
ℝ) |
116 | | 0le1 11428 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ≤
1 |
117 | 116 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → 0 ≤
1) |
118 | | nnge1 11931 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → 1 ≤
𝑗) |
119 | 114, 115,
113, 117, 118 | letrd 11062 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → 0 ≤
𝑗) |
120 | 113, 119 | ge0p1rpd 12731 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℝ+) |
121 | 112, 120 | rpmulcld 12717 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → (2
· (𝑗 + 1)) ∈
ℝ+) |
122 | 121 | sqrtgt0d 15052 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 0 <
(√‘(2 · (𝑗 + 1)))) |
123 | 122 | gt0ne0d 11469 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ →
(√‘(2 · (𝑗 + 1))) ≠ 0) |
124 | 81 | nnne0d 11953 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0) |
125 | 98, 103, 124, 107 | divne0d 11697 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ≠
0) |
126 | | nnz 12272 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
127 | 126 | peano2zd 12358 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℤ) |
128 | 108, 125,
127 | expne0d 13798 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ≠ 0) |
129 | 100, 109,
123, 128 | mulne0d 11557 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ →
((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ≠ 0) |
130 | 94, 110, 129 | divcld 11681 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ →
((!‘(𝑗 + 1)) /
((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℂ) |
131 | 82, 90, 81, 130 | fvmptd 6864 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))))) |
132 | | nnrp 12670 |
. . . . . . . . . . . 12
⊢
((!‘(𝑗 + 1))
∈ ℕ → (!‘(𝑗 + 1)) ∈
ℝ+) |
133 | 91, 92, 132 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ →
(!‘(𝑗 + 1)) ∈
ℝ+) |
134 | 121 | rpsqrtcld 15051 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ →
(√‘(2 · (𝑗 + 1))) ∈
ℝ+) |
135 | | epr 15845 |
. . . . . . . . . . . . . . 15
⊢ e ∈
ℝ+ |
136 | 135 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → e ∈
ℝ+) |
137 | 120, 136 | rpdivcld 12718 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈
ℝ+) |
138 | 137, 127 | rpexpcld 13890 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈
ℝ+) |
139 | 134, 138 | rpmulcld 12717 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ →
((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈
ℝ+) |
140 | 133, 139 | rpdivcld 12718 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ →
((!‘(𝑗 + 1)) /
((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈
ℝ+) |
141 | 131, 140 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈
ℝ+) |
142 | 141 | relogcld 25683 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ →
(log‘(𝐴‘(𝑗 + 1))) ∈
ℝ) |
143 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑗 + 1) |
144 | 21, 143 | nffv 6766 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝐴‘(𝑗 + 1)) |
145 | 19, 144 | nffv 6766 |
. . . . . . . . 9
⊢
Ⅎ𝑛(log‘(𝐴‘(𝑗 + 1))) |
146 | | 2fveq3 6761 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 1) → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘(𝑗 + 1)))) |
147 | 143, 145,
146, 2 | fvmptf 6878 |
. . . . . . . 8
⊢ (((𝑗 + 1) ∈ ℕ ∧
(log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) →
(𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1)))) |
148 | 81, 142, 147 | syl2anc 583 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1)))) |
149 | 148, 142 | eqeltrd 2839 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
150 | 79 | ffvelrni 6942 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → (𝐵‘𝑗) ∈ ℝ) |
151 | | eqid 2738 |
. . . . . . 7
⊢ (𝑧 ∈ ℕ ↦ ((1 /
((2 · 𝑧) + 1))
· ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧)))) = (𝑧 ∈ ℕ ↦ ((1 / ((2 ·
𝑧) + 1)) · ((1 / ((2
· 𝑗) + 1))↑(2
· 𝑧)))) |
152 | 6, 2, 151 | stirlinglem11 43515 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) < (𝐵‘𝑗)) |
153 | 149, 150,
152 | ltled 11053 |
. . . . 5
⊢ (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ≤ (𝐵‘𝑗)) |
154 | 153 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑗
∈ ℕ) → (𝐵‘(𝑗 + 1)) ≤ (𝐵‘𝑗)) |
155 | 52 | a1i 11 |
. . . 4
⊢ (⊤
→ ∃𝑥 ∈
ℝ ∀𝑗 ∈
ℕ 𝑥 ≤ (𝐵‘𝑗)) |
156 | 77, 78, 80, 154, 155 | climinf 43037 |
. . 3
⊢ (⊤
→ 𝐵 ⇝ inf(ran
𝐵, ℝ, <
)) |
157 | 156 | mptru 1546 |
. 2
⊢ 𝐵 ⇝ inf(ran 𝐵, ℝ, <
) |
158 | | breq2 5074 |
. . 3
⊢ (𝑑 = inf(ran 𝐵, ℝ, < ) → (𝐵 ⇝ 𝑑 ↔ 𝐵 ⇝ inf(ran 𝐵, ℝ, < ))) |
159 | 158 | rspcev 3552 |
. 2
⊢ ((inf(ran
𝐵, ℝ, < ) ∈
ℝ ∧ 𝐵 ⇝
inf(ran 𝐵, ℝ, < ))
→ ∃𝑑 ∈
ℝ 𝐵 ⇝ 𝑑) |
160 | 76, 157, 159 | mp2an 688 |
1
⊢
∃𝑑 ∈
ℝ 𝐵 ⇝ 𝑑 |