Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem13 Structured version   Visualization version   GIF version

Theorem stirlinglem13 44317
Description: 𝐵 is decreasing and has a lower bound, then it converges. Since 𝐵 is log𝐴, in another theorem it is proven that 𝐴 converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem13.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem13.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem13 𝑑 ∈ ℝ 𝐵𝑑
Distinct variable group:   𝐵,𝑑
Allowed substitution hints:   𝐴(𝑛,𝑑)   𝐵(𝑛)

Proof of Theorem stirlinglem13
Dummy variables 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . . . . 6 𝑦 ∈ V
2 stirlinglem13.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
32elrnmpt 5911 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛))))
41, 3ax-mp 5 . . . . 5 (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)))
5 simpr 485 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 = (log‘(𝐴𝑛)))
6 stirlinglem13.1 . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
76stirlinglem2 44306 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
87relogcld 25978 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℝ)
98adantr 481 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → (log‘(𝐴𝑛)) ∈ ℝ)
105, 9eqeltrd 2838 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 ∈ ℝ)
1110rexlimiva 3144 . . . . 5 (∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)) → 𝑦 ∈ ℝ)
124, 11sylbi 216 . . . 4 (𝑦 ∈ ran 𝐵𝑦 ∈ ℝ)
1312ssriv 3948 . . 3 ran 𝐵 ⊆ ℝ
14 1nn 12164 . . . . . 6 1 ∈ ℕ
156stirlinglem2 44306 . . . . . . . 8 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
16 relogcl 25931 . . . . . . . 8 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
1714, 15, 16mp2b 10 . . . . . . 7 (log‘(𝐴‘1)) ∈ ℝ
18 nfcv 2907 . . . . . . . 8 𝑛1
19 nfcv 2907 . . . . . . . . 9 𝑛log
20 nfmpt1 5213 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
216, 20nfcxfr 2905 . . . . . . . . . 10 𝑛𝐴
2221, 18nffv 6852 . . . . . . . . 9 𝑛(𝐴‘1)
2319, 22nffv 6852 . . . . . . . 8 𝑛(log‘(𝐴‘1))
24 2fveq3 6847 . . . . . . . 8 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
2518, 23, 24, 2fvmptf 6969 . . . . . . 7 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
2614, 17, 25mp2an 690 . . . . . 6 (𝐵‘1) = (log‘(𝐴‘1))
27 2fveq3 6847 . . . . . . 7 (𝑗 = 1 → (log‘(𝐴𝑗)) = (log‘(𝐴‘1)))
2827rspceeqv 3595 . . . . . 6 ((1 ∈ ℕ ∧ (𝐵‘1) = (log‘(𝐴‘1))) → ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
2914, 26, 28mp2an 690 . . . . 5 𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))
3026, 17eqeltri 2834 . . . . . 6 (𝐵‘1) ∈ ℝ
31 nfcv 2907 . . . . . . . . 9 𝑗(log‘(𝐴𝑛))
32 nfcv 2907 . . . . . . . . . . 11 𝑛𝑗
3321, 32nffv 6852 . . . . . . . . . 10 𝑛(𝐴𝑗)
3419, 33nffv 6852 . . . . . . . . 9 𝑛(log‘(𝐴𝑗))
35 2fveq3 6847 . . . . . . . . 9 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
3631, 34, 35cbvmpt 5216 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
372, 36eqtri 2764 . . . . . . 7 𝐵 = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
3837elrnmpt 5911 . . . . . 6 ((𝐵‘1) ∈ ℝ → ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))))
3930, 38ax-mp 5 . . . . 5 ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
4029, 39mpbir 230 . . . 4 (𝐵‘1) ∈ ran 𝐵
4140ne0ii 4297 . . 3 ran 𝐵 ≠ ∅
42 4re 12237 . . . . . . 7 4 ∈ ℝ
43 4ne0 12261 . . . . . . 7 4 ≠ 0
4442, 43rereccli 11920 . . . . . 6 (1 / 4) ∈ ℝ
4530, 44resubcli 11463 . . . . 5 ((𝐵‘1) − (1 / 4)) ∈ ℝ
46 eqid 2736 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
476, 2, 46stirlinglem12 44316 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗))
4847rgen 3066 . . . . 5 𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)
49 breq1 5108 . . . . . . 7 (𝑥 = ((𝐵‘1) − (1 / 4)) → (𝑥 ≤ (𝐵𝑗) ↔ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5049ralbidv 3174 . . . . . 6 (𝑥 = ((𝐵‘1) − (1 / 4)) → (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ↔ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5150rspcev 3581 . . . . 5 ((((𝐵‘1) − (1 / 4)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
5245, 48, 51mp2an 690 . . . 4 𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
53 simpr 485 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑦 ∈ ran 𝐵)
548rgen 3066 . . . . . . . . 9 𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ
552fnmpt 6641 . . . . . . . . 9 (∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ → 𝐵 Fn ℕ)
56 fvelrnb 6903 . . . . . . . . 9 (𝐵 Fn ℕ → (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦))
5754, 55, 56mp2b 10 . . . . . . . 8 (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
5853, 57sylib 217 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
59 nfra1 3267 . . . . . . . . 9 𝑗𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
60 nfv 1917 . . . . . . . . 9 𝑗 𝑦 ∈ ran 𝐵
6159, 60nfan 1902 . . . . . . . 8 𝑗(∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵)
62 nfv 1917 . . . . . . . 8 𝑗 𝑥𝑦
63 simp1l 1197 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
64 simp2 1137 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑗 ∈ ℕ)
65 rsp 3230 . . . . . . . . . . 11 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → (𝑗 ∈ ℕ → 𝑥 ≤ (𝐵𝑗)))
6663, 64, 65sylc 65 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥 ≤ (𝐵𝑗))
67 simp3 1138 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → (𝐵𝑗) = 𝑦)
6866, 67breqtrd 5131 . . . . . . . . 9 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥𝑦)
69683exp 1119 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (𝑗 ∈ ℕ → ((𝐵𝑗) = 𝑦𝑥𝑦)))
7061, 62, 69rexlimd 3249 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦𝑥𝑦))
7158, 70mpd 15 . . . . . 6 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑥𝑦)
7271ralrimiva 3143 . . . . 5 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7372reximi 3087 . . . 4 (∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7452, 73ax-mp 5 . . 3 𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦
75 infrecl 12137 . . 3 ((ran 𝐵 ⊆ ℝ ∧ ran 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦) → inf(ran 𝐵, ℝ, < ) ∈ ℝ)
7613, 41, 74, 75mp3an 1461 . 2 inf(ran 𝐵, ℝ, < ) ∈ ℝ
77 nnuz 12806 . . . 4 ℕ = (ℤ‘1)
78 1zzd 12534 . . . 4 (⊤ → 1 ∈ ℤ)
792, 8fmpti 7060 . . . . 5 𝐵:ℕ⟶ℝ
8079a1i 11 . . . 4 (⊤ → 𝐵:ℕ⟶ℝ)
81 peano2nn 12165 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
826a1i 11 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
83 simpr 485 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → 𝑛 = (𝑗 + 1))
8483fveq2d 6846 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (!‘𝑛) = (!‘(𝑗 + 1)))
8583oveq2d 7373 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (2 · 𝑛) = (2 · (𝑗 + 1)))
8685fveq2d 6846 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (√‘(2 · 𝑛)) = (√‘(2 · (𝑗 + 1))))
8783oveq1d 7372 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (𝑛 / e) = ((𝑗 + 1) / e))
8887, 83oveq12d 7375 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((𝑛 / e)↑𝑛) = (((𝑗 + 1) / e)↑(𝑗 + 1)))
8986, 88oveq12d 7375 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))))
9084, 89oveq12d 7375 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
9181nnnn0d 12473 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
92 faccl 14183 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℕ0 → (!‘(𝑗 + 1)) ∈ ℕ)
93 nncn 12161 . . . . . . . . . . . . 13 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
9491, 92, 933syl 18 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
95 2cnd 12231 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 2 ∈ ℂ)
96 nncn 12161 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
97 1cnd 11150 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 1 ∈ ℂ)
9896, 97addcld 11174 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
9995, 98mulcld 11175 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℂ)
10099sqrtcld 15322 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℂ)
101 ere 15971 . . . . . . . . . . . . . . . . 17 e ∈ ℝ
102101recni 11169 . . . . . . . . . . . . . . . 16 e ∈ ℂ
103102a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ∈ ℂ)
104 0re 11157 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
105 epos 16089 . . . . . . . . . . . . . . . . 17 0 < e
106104, 105gtneii 11267 . . . . . . . . . . . . . . . 16 e ≠ 0
107106a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ≠ 0)
10898, 103, 107divcld 11931 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℂ)
109108, 91expcld 14051 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℂ)
110100, 109mulcld 11175 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℂ)
111 2rp 12920 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
112111a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
113 nnre 12160 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
114104a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ∈ ℝ)
115 1red 11156 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ∈ ℝ)
116 0le1 11678 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≤ 1)
118 nnge1 12181 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
119114, 115, 113, 117, 118letrd 11312 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 0 ≤ 𝑗)
120113, 119ge0p1rpd 12987 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ+)
121112, 120rpmulcld 12973 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℝ+)
122121sqrtgt0d 15297 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < (√‘(2 · (𝑗 + 1))))
123122gt0ne0d 11719 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ≠ 0)
12481nnne0d 12203 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
12598, 103, 124, 107divne0d 11947 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ≠ 0)
126 nnz 12520 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
127126peano2zd 12610 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℤ)
128108, 125, 127expne0d 14057 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ≠ 0)
129100, 109, 123, 128mulne0d 11807 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ≠ 0)
13094, 110, 129divcld 11931 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℂ)
13182, 90, 81, 130fvmptd 6955 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
132 nnrp 12926 . . . . . . . . . . . 12 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
13391, 92, 1323syl 18 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
134121rpsqrtcld 15296 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℝ+)
135 epr 16090 . . . . . . . . . . . . . . 15 e ∈ ℝ+
136135a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → e ∈ ℝ+)
137120, 136rpdivcld 12974 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℝ+)
138137, 127rpexpcld 14150 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℝ+)
139134, 138rpmulcld 12973 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℝ+)
140133, 139rpdivcld 12974 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℝ+)
141131, 140eqeltrd 2838 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
142141relogcld 25978 . . . . . . . 8 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
143 nfcv 2907 . . . . . . . . 9 𝑛(𝑗 + 1)
14421, 143nffv 6852 . . . . . . . . . 10 𝑛(𝐴‘(𝑗 + 1))
14519, 144nffv 6852 . . . . . . . . 9 𝑛(log‘(𝐴‘(𝑗 + 1)))
146 2fveq3 6847 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
147143, 145, 146, 2fvmptf 6969 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
14881, 142, 147syl2anc 584 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
149148, 142eqeltrd 2838 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
15079ffvelcdmi 7034 . . . . . 6 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
151 eqid 2736 . . . . . . 7 (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧)))) = (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧))))
1526, 2, 151stirlinglem11 44315 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) < (𝐵𝑗))
153149, 150, 152ltled 11303 . . . . 5 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
154153adantl 482 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
15552a1i 11 . . . 4 (⊤ → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
15677, 78, 80, 154, 155climinf 43837 . . 3 (⊤ → 𝐵 ⇝ inf(ran 𝐵, ℝ, < ))
157156mptru 1548 . 2 𝐵 ⇝ inf(ran 𝐵, ℝ, < )
158 breq2 5109 . . 3 (𝑑 = inf(ran 𝐵, ℝ, < ) → (𝐵𝑑𝐵 ⇝ inf(ran 𝐵, ℝ, < )))
159158rspcev 3581 . 2 ((inf(ran 𝐵, ℝ, < ) ∈ ℝ ∧ 𝐵 ⇝ inf(ran 𝐵, ℝ, < )) → ∃𝑑 ∈ ℝ 𝐵𝑑)
16076, 157, 159mp2an 690 1 𝑑 ∈ ℝ 𝐵𝑑
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  infcinf 9377  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  0cn0 12413  +crp 12915  cexp 13967  !cfa 14173  csqrt 15118  cli 15366  eceu 15945  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-cxp 25913
This theorem is referenced by:  stirlinglem14  44318
  Copyright terms: Public domain W3C validator