Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem13 Structured version   Visualization version   GIF version

Theorem stirlinglem13 46041
Description: 𝐵 is decreasing and has a lower bound, then it converges. Since 𝐵 is log𝐴, in another theorem it is proven that 𝐴 converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem13.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem13.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem13 𝑑 ∈ ℝ 𝐵𝑑
Distinct variable group:   𝐵,𝑑
Allowed substitution hints:   𝐴(𝑛,𝑑)   𝐵(𝑛)

Proof of Theorem stirlinglem13
Dummy variables 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3481 . . . . . 6 𝑦 ∈ V
2 stirlinglem13.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
32elrnmpt 5971 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛))))
41, 3ax-mp 5 . . . . 5 (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)))
5 simpr 484 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 = (log‘(𝐴𝑛)))
6 stirlinglem13.1 . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
76stirlinglem2 46030 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
87relogcld 26679 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℝ)
98adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → (log‘(𝐴𝑛)) ∈ ℝ)
105, 9eqeltrd 2838 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 ∈ ℝ)
1110rexlimiva 3144 . . . . 5 (∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)) → 𝑦 ∈ ℝ)
124, 11sylbi 217 . . . 4 (𝑦 ∈ ran 𝐵𝑦 ∈ ℝ)
1312ssriv 3998 . . 3 ran 𝐵 ⊆ ℝ
14 1nn 12274 . . . . . 6 1 ∈ ℕ
156stirlinglem2 46030 . . . . . . . 8 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
16 relogcl 26631 . . . . . . . 8 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
1714, 15, 16mp2b 10 . . . . . . 7 (log‘(𝐴‘1)) ∈ ℝ
18 nfcv 2902 . . . . . . . 8 𝑛1
19 nfcv 2902 . . . . . . . . 9 𝑛log
20 nfmpt1 5255 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
216, 20nfcxfr 2900 . . . . . . . . . 10 𝑛𝐴
2221, 18nffv 6916 . . . . . . . . 9 𝑛(𝐴‘1)
2319, 22nffv 6916 . . . . . . . 8 𝑛(log‘(𝐴‘1))
24 2fveq3 6911 . . . . . . . 8 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
2518, 23, 24, 2fvmptf 7036 . . . . . . 7 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
2614, 17, 25mp2an 692 . . . . . 6 (𝐵‘1) = (log‘(𝐴‘1))
27 2fveq3 6911 . . . . . . 7 (𝑗 = 1 → (log‘(𝐴𝑗)) = (log‘(𝐴‘1)))
2827rspceeqv 3644 . . . . . 6 ((1 ∈ ℕ ∧ (𝐵‘1) = (log‘(𝐴‘1))) → ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
2914, 26, 28mp2an 692 . . . . 5 𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))
3026, 17eqeltri 2834 . . . . . 6 (𝐵‘1) ∈ ℝ
31 nfcv 2902 . . . . . . . . 9 𝑗(log‘(𝐴𝑛))
32 nfcv 2902 . . . . . . . . . . 11 𝑛𝑗
3321, 32nffv 6916 . . . . . . . . . 10 𝑛(𝐴𝑗)
3419, 33nffv 6916 . . . . . . . . 9 𝑛(log‘(𝐴𝑗))
35 2fveq3 6911 . . . . . . . . 9 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
3631, 34, 35cbvmpt 5258 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
372, 36eqtri 2762 . . . . . . 7 𝐵 = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
3837elrnmpt 5971 . . . . . 6 ((𝐵‘1) ∈ ℝ → ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))))
3930, 38ax-mp 5 . . . . 5 ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
4029, 39mpbir 231 . . . 4 (𝐵‘1) ∈ ran 𝐵
4140ne0ii 4349 . . 3 ran 𝐵 ≠ ∅
42 4re 12347 . . . . . . 7 4 ∈ ℝ
43 4ne0 12371 . . . . . . 7 4 ≠ 0
4442, 43rereccli 12029 . . . . . 6 (1 / 4) ∈ ℝ
4530, 44resubcli 11568 . . . . 5 ((𝐵‘1) − (1 / 4)) ∈ ℝ
46 eqid 2734 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
476, 2, 46stirlinglem12 46040 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗))
4847rgen 3060 . . . . 5 𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)
49 breq1 5150 . . . . . . 7 (𝑥 = ((𝐵‘1) − (1 / 4)) → (𝑥 ≤ (𝐵𝑗) ↔ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5049ralbidv 3175 . . . . . 6 (𝑥 = ((𝐵‘1) − (1 / 4)) → (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ↔ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5150rspcev 3621 . . . . 5 ((((𝐵‘1) − (1 / 4)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
5245, 48, 51mp2an 692 . . . 4 𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
53 simpr 484 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑦 ∈ ran 𝐵)
548rgen 3060 . . . . . . . . 9 𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ
552fnmpt 6708 . . . . . . . . 9 (∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ → 𝐵 Fn ℕ)
56 fvelrnb 6968 . . . . . . . . 9 (𝐵 Fn ℕ → (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦))
5754, 55, 56mp2b 10 . . . . . . . 8 (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
5853, 57sylib 218 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
59 nfra1 3281 . . . . . . . . 9 𝑗𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
60 nfv 1911 . . . . . . . . 9 𝑗 𝑦 ∈ ran 𝐵
6159, 60nfan 1896 . . . . . . . 8 𝑗(∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵)
62 nfv 1911 . . . . . . . 8 𝑗 𝑥𝑦
63 simp1l 1196 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
64 simp2 1136 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑗 ∈ ℕ)
65 rsp 3244 . . . . . . . . . . 11 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → (𝑗 ∈ ℕ → 𝑥 ≤ (𝐵𝑗)))
6663, 64, 65sylc 65 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥 ≤ (𝐵𝑗))
67 simp3 1137 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → (𝐵𝑗) = 𝑦)
6866, 67breqtrd 5173 . . . . . . . . 9 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥𝑦)
69683exp 1118 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (𝑗 ∈ ℕ → ((𝐵𝑗) = 𝑦𝑥𝑦)))
7061, 62, 69rexlimd 3263 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦𝑥𝑦))
7158, 70mpd 15 . . . . . 6 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑥𝑦)
7271ralrimiva 3143 . . . . 5 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7372reximi 3081 . . . 4 (∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7452, 73ax-mp 5 . . 3 𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦
75 infrecl 12247 . . 3 ((ran 𝐵 ⊆ ℝ ∧ ran 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦) → inf(ran 𝐵, ℝ, < ) ∈ ℝ)
7613, 41, 74, 75mp3an 1460 . 2 inf(ran 𝐵, ℝ, < ) ∈ ℝ
77 nnuz 12918 . . . 4 ℕ = (ℤ‘1)
78 1zzd 12645 . . . 4 (⊤ → 1 ∈ ℤ)
792, 8fmpti 7131 . . . . 5 𝐵:ℕ⟶ℝ
8079a1i 11 . . . 4 (⊤ → 𝐵:ℕ⟶ℝ)
81 peano2nn 12275 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
826a1i 11 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
83 simpr 484 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → 𝑛 = (𝑗 + 1))
8483fveq2d 6910 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (!‘𝑛) = (!‘(𝑗 + 1)))
8583oveq2d 7446 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (2 · 𝑛) = (2 · (𝑗 + 1)))
8685fveq2d 6910 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (√‘(2 · 𝑛)) = (√‘(2 · (𝑗 + 1))))
8783oveq1d 7445 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (𝑛 / e) = ((𝑗 + 1) / e))
8887, 83oveq12d 7448 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((𝑛 / e)↑𝑛) = (((𝑗 + 1) / e)↑(𝑗 + 1)))
8986, 88oveq12d 7448 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))))
9084, 89oveq12d 7448 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
9181nnnn0d 12584 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
92 faccl 14318 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℕ0 → (!‘(𝑗 + 1)) ∈ ℕ)
93 nncn 12271 . . . . . . . . . . . . 13 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
9491, 92, 933syl 18 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
95 2cnd 12341 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 2 ∈ ℂ)
96 nncn 12271 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
97 1cnd 11253 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 1 ∈ ℂ)
9896, 97addcld 11277 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
9995, 98mulcld 11278 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℂ)
10099sqrtcld 15472 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℂ)
101 ere 16121 . . . . . . . . . . . . . . . . 17 e ∈ ℝ
102101recni 11272 . . . . . . . . . . . . . . . 16 e ∈ ℂ
103102a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ∈ ℂ)
104 0re 11260 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
105 epos 16239 . . . . . . . . . . . . . . . . 17 0 < e
106104, 105gtneii 11370 . . . . . . . . . . . . . . . 16 e ≠ 0
107106a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ≠ 0)
10898, 103, 107divcld 12040 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℂ)
109108, 91expcld 14182 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℂ)
110100, 109mulcld 11278 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℂ)
111 2rp 13036 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
112111a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
113 nnre 12270 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
114104a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ∈ ℝ)
115 1red 11259 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ∈ ℝ)
116 0le1 11783 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≤ 1)
118 nnge1 12291 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
119114, 115, 113, 117, 118letrd 11415 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 0 ≤ 𝑗)
120113, 119ge0p1rpd 13104 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ+)
121112, 120rpmulcld 13090 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℝ+)
122121sqrtgt0d 15447 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < (√‘(2 · (𝑗 + 1))))
123122gt0ne0d 11824 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ≠ 0)
12481nnne0d 12313 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
12598, 103, 124, 107divne0d 12056 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ≠ 0)
126 nnz 12631 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
127126peano2zd 12722 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℤ)
128108, 125, 127expne0d 14188 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ≠ 0)
129100, 109, 123, 128mulne0d 11912 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ≠ 0)
13094, 110, 129divcld 12040 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℂ)
13182, 90, 81, 130fvmptd 7022 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
132 nnrp 13043 . . . . . . . . . . . 12 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
13391, 92, 1323syl 18 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
134121rpsqrtcld 15446 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℝ+)
135 epr 16240 . . . . . . . . . . . . . . 15 e ∈ ℝ+
136135a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → e ∈ ℝ+)
137120, 136rpdivcld 13091 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℝ+)
138137, 127rpexpcld 14282 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℝ+)
139134, 138rpmulcld 13090 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℝ+)
140133, 139rpdivcld 13091 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℝ+)
141131, 140eqeltrd 2838 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
142141relogcld 26679 . . . . . . . 8 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
143 nfcv 2902 . . . . . . . . 9 𝑛(𝑗 + 1)
14421, 143nffv 6916 . . . . . . . . . 10 𝑛(𝐴‘(𝑗 + 1))
14519, 144nffv 6916 . . . . . . . . 9 𝑛(log‘(𝐴‘(𝑗 + 1)))
146 2fveq3 6911 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
147143, 145, 146, 2fvmptf 7036 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
14881, 142, 147syl2anc 584 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
149148, 142eqeltrd 2838 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
15079ffvelcdmi 7102 . . . . . 6 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
151 eqid 2734 . . . . . . 7 (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧)))) = (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧))))
1526, 2, 151stirlinglem11 46039 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) < (𝐵𝑗))
153149, 150, 152ltled 11406 . . . . 5 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
154153adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
15552a1i 11 . . . 4 (⊤ → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
15677, 78, 80, 154, 155climinf 45561 . . 3 (⊤ → 𝐵 ⇝ inf(ran 𝐵, ℝ, < ))
157156mptru 1543 . 2 𝐵 ⇝ inf(ran 𝐵, ℝ, < )
158 breq2 5151 . . 3 (𝑑 = inf(ran 𝐵, ℝ, < ) → (𝐵𝑑𝐵 ⇝ inf(ran 𝐵, ℝ, < )))
159158rspcev 3621 . 2 ((inf(ran 𝐵, ℝ, < ) ∈ ℝ ∧ 𝐵 ⇝ inf(ran 𝐵, ℝ, < )) → ∃𝑑 ∈ ℝ 𝐵𝑑)
16076, 157, 159mp2an 692 1 𝑑 ∈ ℝ 𝐵𝑑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1536  wtru 1537  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  wss 3962  c0 4338   class class class wbr 5147  cmpt 5230  ran crn 5689   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  infcinf 9478  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  4c4 12320  0cn0 12523  +crp 13031  cexp 14098  !cfa 14308  csqrt 15268  cli 15516  eceu 16094  logclog 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-e 16100  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-dvds 16287  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-ulm 26434  df-log 26612  df-cxp 26613
This theorem is referenced by:  stirlinglem14  46042
  Copyright terms: Public domain W3C validator