Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem13 Structured version   Visualization version   GIF version

Theorem stirlinglem13 46084
Description: 𝐵 is decreasing and has a lower bound, then it converges. Since 𝐵 is log𝐴, in another theorem it is proven that 𝐴 converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem13.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem13.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem13 𝑑 ∈ ℝ 𝐵𝑑
Distinct variable group:   𝐵,𝑑
Allowed substitution hints:   𝐴(𝑛,𝑑)   𝐵(𝑛)

Proof of Theorem stirlinglem13
Dummy variables 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . . 6 𝑦 ∈ V
2 stirlinglem13.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
32elrnmpt 5922 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛))))
41, 3ax-mp 5 . . . . 5 (𝑦 ∈ ran 𝐵 ↔ ∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)))
5 simpr 484 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 = (log‘(𝐴𝑛)))
6 stirlinglem13.1 . . . . . . . . . 10 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
76stirlinglem2 46073 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
87relogcld 26532 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℝ)
98adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → (log‘(𝐴𝑛)) ∈ ℝ)
105, 9eqeltrd 2828 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑦 = (log‘(𝐴𝑛))) → 𝑦 ∈ ℝ)
1110rexlimiva 3126 . . . . 5 (∃𝑛 ∈ ℕ 𝑦 = (log‘(𝐴𝑛)) → 𝑦 ∈ ℝ)
124, 11sylbi 217 . . . 4 (𝑦 ∈ ran 𝐵𝑦 ∈ ℝ)
1312ssriv 3950 . . 3 ran 𝐵 ⊆ ℝ
14 1nn 12197 . . . . . 6 1 ∈ ℕ
156stirlinglem2 46073 . . . . . . . 8 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
16 relogcl 26484 . . . . . . . 8 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
1714, 15, 16mp2b 10 . . . . . . 7 (log‘(𝐴‘1)) ∈ ℝ
18 nfcv 2891 . . . . . . . 8 𝑛1
19 nfcv 2891 . . . . . . . . 9 𝑛log
20 nfmpt1 5206 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
216, 20nfcxfr 2889 . . . . . . . . . 10 𝑛𝐴
2221, 18nffv 6868 . . . . . . . . 9 𝑛(𝐴‘1)
2319, 22nffv 6868 . . . . . . . 8 𝑛(log‘(𝐴‘1))
24 2fveq3 6863 . . . . . . . 8 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
2518, 23, 24, 2fvmptf 6989 . . . . . . 7 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
2614, 17, 25mp2an 692 . . . . . 6 (𝐵‘1) = (log‘(𝐴‘1))
27 2fveq3 6863 . . . . . . 7 (𝑗 = 1 → (log‘(𝐴𝑗)) = (log‘(𝐴‘1)))
2827rspceeqv 3611 . . . . . 6 ((1 ∈ ℕ ∧ (𝐵‘1) = (log‘(𝐴‘1))) → ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
2914, 26, 28mp2an 692 . . . . 5 𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))
3026, 17eqeltri 2824 . . . . . 6 (𝐵‘1) ∈ ℝ
31 nfcv 2891 . . . . . . . . 9 𝑗(log‘(𝐴𝑛))
32 nfcv 2891 . . . . . . . . . . 11 𝑛𝑗
3321, 32nffv 6868 . . . . . . . . . 10 𝑛(𝐴𝑗)
3419, 33nffv 6868 . . . . . . . . 9 𝑛(log‘(𝐴𝑗))
35 2fveq3 6863 . . . . . . . . 9 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
3631, 34, 35cbvmpt 5209 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
372, 36eqtri 2752 . . . . . . 7 𝐵 = (𝑗 ∈ ℕ ↦ (log‘(𝐴𝑗)))
3837elrnmpt 5922 . . . . . 6 ((𝐵‘1) ∈ ℝ → ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗))))
3930, 38ax-mp 5 . . . . 5 ((𝐵‘1) ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵‘1) = (log‘(𝐴𝑗)))
4029, 39mpbir 231 . . . 4 (𝐵‘1) ∈ ran 𝐵
4140ne0ii 4307 . . 3 ran 𝐵 ≠ ∅
42 4re 12270 . . . . . . 7 4 ∈ ℝ
43 4ne0 12294 . . . . . . 7 4 ≠ 0
4442, 43rereccli 11947 . . . . . 6 (1 / 4) ∈ ℝ
4530, 44resubcli 11484 . . . . 5 ((𝐵‘1) − (1 / 4)) ∈ ℝ
46 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
476, 2, 46stirlinglem12 46083 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗))
4847rgen 3046 . . . . 5 𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)
49 breq1 5110 . . . . . . 7 (𝑥 = ((𝐵‘1) − (1 / 4)) → (𝑥 ≤ (𝐵𝑗) ↔ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5049ralbidv 3156 . . . . . 6 (𝑥 = ((𝐵‘1) − (1 / 4)) → (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ↔ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)))
5150rspcev 3588 . . . . 5 ((((𝐵‘1) − (1 / 4)) ∈ ℝ ∧ ∀𝑗 ∈ ℕ ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
5245, 48, 51mp2an 692 . . . 4 𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
53 simpr 484 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑦 ∈ ran 𝐵)
548rgen 3046 . . . . . . . . 9 𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ
552fnmpt 6658 . . . . . . . . 9 (∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ ℝ → 𝐵 Fn ℕ)
56 fvelrnb 6921 . . . . . . . . 9 (𝐵 Fn ℕ → (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦))
5754, 55, 56mp2b 10 . . . . . . . 8 (𝑦 ∈ ran 𝐵 ↔ ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
5853, 57sylib 218 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → ∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦)
59 nfra1 3261 . . . . . . . . 9 𝑗𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗)
60 nfv 1914 . . . . . . . . 9 𝑗 𝑦 ∈ ran 𝐵
6159, 60nfan 1899 . . . . . . . 8 𝑗(∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵)
62 nfv 1914 . . . . . . . 8 𝑗 𝑥𝑦
63 simp1l 1198 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
64 simp2 1137 . . . . . . . . . . 11 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑗 ∈ ℕ)
65 rsp 3225 . . . . . . . . . . 11 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → (𝑗 ∈ ℕ → 𝑥 ≤ (𝐵𝑗)))
6663, 64, 65sylc 65 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥 ≤ (𝐵𝑗))
67 simp3 1138 . . . . . . . . . 10 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → (𝐵𝑗) = 𝑦)
6866, 67breqtrd 5133 . . . . . . . . 9 (((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) ∧ 𝑗 ∈ ℕ ∧ (𝐵𝑗) = 𝑦) → 𝑥𝑦)
69683exp 1119 . . . . . . . 8 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (𝑗 ∈ ℕ → ((𝐵𝑗) = 𝑦𝑥𝑦)))
7061, 62, 69rexlimd 3244 . . . . . . 7 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → (∃𝑗 ∈ ℕ (𝐵𝑗) = 𝑦𝑥𝑦))
7158, 70mpd 15 . . . . . 6 ((∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) ∧ 𝑦 ∈ ran 𝐵) → 𝑥𝑦)
7271ralrimiva 3125 . . . . 5 (∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7372reximi 3067 . . . 4 (∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦)
7452, 73ax-mp 5 . . 3 𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦
75 infrecl 12165 . . 3 ((ran 𝐵 ⊆ ℝ ∧ ran 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐵 𝑥𝑦) → inf(ran 𝐵, ℝ, < ) ∈ ℝ)
7613, 41, 74, 75mp3an 1463 . 2 inf(ran 𝐵, ℝ, < ) ∈ ℝ
77 nnuz 12836 . . . 4 ℕ = (ℤ‘1)
78 1zzd 12564 . . . 4 (⊤ → 1 ∈ ℤ)
792, 8fmpti 7084 . . . . 5 𝐵:ℕ⟶ℝ
8079a1i 11 . . . 4 (⊤ → 𝐵:ℕ⟶ℝ)
81 peano2nn 12198 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
826a1i 11 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
83 simpr 484 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → 𝑛 = (𝑗 + 1))
8483fveq2d 6862 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (!‘𝑛) = (!‘(𝑗 + 1)))
8583oveq2d 7403 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (2 · 𝑛) = (2 · (𝑗 + 1)))
8685fveq2d 6862 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (√‘(2 · 𝑛)) = (√‘(2 · (𝑗 + 1))))
8783oveq1d 7402 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → (𝑛 / e) = ((𝑗 + 1) / e))
8887, 83oveq12d 7405 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((𝑛 / e)↑𝑛) = (((𝑗 + 1) / e)↑(𝑗 + 1)))
8986, 88oveq12d 7405 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))))
9084, 89oveq12d 7405 . . . . . . . . . . 11 ((𝑗 ∈ ℕ ∧ 𝑛 = (𝑗 + 1)) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
9181nnnn0d 12503 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ0)
92 faccl 14248 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℕ0 → (!‘(𝑗 + 1)) ∈ ℕ)
93 nncn 12194 . . . . . . . . . . . . 13 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
9491, 92, 933syl 18 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℂ)
95 2cnd 12264 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 2 ∈ ℂ)
96 nncn 12194 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
97 1cnd 11169 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 1 ∈ ℂ)
9896, 97addcld 11193 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
9995, 98mulcld 11194 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℂ)
10099sqrtcld 15406 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℂ)
101 ere 16055 . . . . . . . . . . . . . . . . 17 e ∈ ℝ
102101recni 11188 . . . . . . . . . . . . . . . 16 e ∈ ℂ
103102a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ∈ ℂ)
104 0re 11176 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
105 epos 16175 . . . . . . . . . . . . . . . . 17 0 < e
106104, 105gtneii 11286 . . . . . . . . . . . . . . . 16 e ≠ 0
107106a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → e ≠ 0)
10898, 103, 107divcld 11958 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℂ)
109108, 91expcld 14111 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℂ)
110100, 109mulcld 11194 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℂ)
111 2rp 12956 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
112111a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
113 nnre 12193 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
114104a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ∈ ℝ)
115 1red 11175 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ∈ ℝ)
116 0le1 11701 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≤ 1)
118 nnge1 12214 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
119114, 115, 113, 117, 118letrd 11331 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 0 ≤ 𝑗)
120113, 119ge0p1rpd 13025 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ+)
121112, 120rpmulcld 13011 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · (𝑗 + 1)) ∈ ℝ+)
122121sqrtgt0d 15379 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < (√‘(2 · (𝑗 + 1))))
123122gt0ne0d 11742 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ≠ 0)
12481nnne0d 12236 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
12598, 103, 124, 107divne0d 11974 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ≠ 0)
126 nnz 12550 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
127126peano2zd 12641 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℤ)
128108, 125, 127expne0d 14117 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ≠ 0)
129100, 109, 123, 128mulne0d 11830 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ≠ 0)
13094, 110, 129divcld 11958 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℂ)
13182, 90, 81, 130fvmptd 6975 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) = ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))))
132 nnrp 12963 . . . . . . . . . . . 12 ((!‘(𝑗 + 1)) ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
13391, 92, 1323syl 18 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (!‘(𝑗 + 1)) ∈ ℝ+)
134121rpsqrtcld 15378 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (√‘(2 · (𝑗 + 1))) ∈ ℝ+)
135 epr 16176 . . . . . . . . . . . . . . 15 e ∈ ℝ+
136135a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → e ∈ ℝ+)
137120, 136rpdivcld 13012 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → ((𝑗 + 1) / e) ∈ ℝ+)
138137, 127rpexpcld 14212 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝑗 + 1) / e)↑(𝑗 + 1)) ∈ ℝ+)
139134, 138rpmulcld 13011 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1))) ∈ ℝ+)
140133, 139rpdivcld 13012 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((!‘(𝑗 + 1)) / ((√‘(2 · (𝑗 + 1))) · (((𝑗 + 1) / e)↑(𝑗 + 1)))) ∈ ℝ+)
141131, 140eqeltrd 2828 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
142141relogcld 26532 . . . . . . . 8 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
143 nfcv 2891 . . . . . . . . 9 𝑛(𝑗 + 1)
14421, 143nffv 6868 . . . . . . . . . 10 𝑛(𝐴‘(𝑗 + 1))
14519, 144nffv 6868 . . . . . . . . 9 𝑛(log‘(𝐴‘(𝑗 + 1)))
146 2fveq3 6863 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
147143, 145, 146, 2fvmptf 6989 . . . . . . . 8 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
14881, 142, 147syl2anc 584 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
149148, 142eqeltrd 2828 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
15079ffvelcdmi 7055 . . . . . 6 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
151 eqid 2729 . . . . . . 7 (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧)))) = (𝑧 ∈ ℕ ↦ ((1 / ((2 · 𝑧) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑧))))
1526, 2, 151stirlinglem11 46082 . . . . . 6 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) < (𝐵𝑗))
153149, 150, 152ltled 11322 . . . . 5 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
154153adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐵‘(𝑗 + 1)) ≤ (𝐵𝑗))
15552a1i 11 . . . 4 (⊤ → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ 𝑥 ≤ (𝐵𝑗))
15677, 78, 80, 154, 155climinf 45604 . . 3 (⊤ → 𝐵 ⇝ inf(ran 𝐵, ℝ, < ))
157156mptru 1547 . 2 𝐵 ⇝ inf(ran 𝐵, ℝ, < )
158 breq2 5111 . . 3 (𝑑 = inf(ran 𝐵, ℝ, < ) → (𝐵𝑑𝐵 ⇝ inf(ran 𝐵, ℝ, < )))
159158rspcev 3588 . 2 ((inf(ran 𝐵, ℝ, < ) ∈ ℝ ∧ 𝐵 ⇝ inf(ran 𝐵, ℝ, < )) → ∃𝑑 ∈ ℝ 𝐵𝑑)
16076, 157, 159mp2an 692 1 𝑑 ∈ ℝ 𝐵𝑑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  4c4 12243  0cn0 12442  +crp 12951  cexp 14026  !cfa 14238  csqrt 15199  cli 15450  eceu 16028  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466
This theorem is referenced by:  stirlinglem14  46085
  Copyright terms: Public domain W3C validator