| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen1lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen1 13007. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| rpnnen1lem.n | ⊢ ℕ ∈ V |
| rpnnen1lem.q | ⊢ ℚ ∈ V |
| Ref | Expression |
|---|---|
| rpnnen1lem4 | ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | . . . . 5 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
| 2 | rpnnen1lem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | |
| 3 | rpnnen1lem.n | . . . . 5 ⊢ ℕ ∈ V | |
| 4 | rpnnen1lem.q | . . . . 5 ⊢ ℚ ∈ V | |
| 5 | 1, 2, 3, 4 | rpnnen1lem1 13002 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) |
| 6 | 4, 3 | elmap 8893 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹‘𝑥):ℕ⟶ℚ) |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥):ℕ⟶ℚ) |
| 8 | frn 6723 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℚ) | |
| 9 | qssre 12983 | . . . 4 ⊢ ℚ ⊆ ℝ | |
| 10 | 8, 9 | sstrdi 3976 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℝ) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ⊆ ℝ) |
| 12 | 1nn 12259 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 13 | 12 | ne0ii 4324 | . . . . 5 ⊢ ℕ ≠ ∅ |
| 14 | fdm 6725 | . . . . . 6 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) = ℕ) | |
| 15 | 14 | neeq1d 2990 | . . . . 5 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → (dom (𝐹‘𝑥) ≠ ∅ ↔ ℕ ≠ ∅)) |
| 16 | 13, 15 | mpbiri 258 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) ≠ ∅) |
| 17 | dm0rn0 5915 | . . . . 5 ⊢ (dom (𝐹‘𝑥) = ∅ ↔ ran (𝐹‘𝑥) = ∅) | |
| 18 | 17 | necon3bii 2983 | . . . 4 ⊢ (dom (𝐹‘𝑥) ≠ ∅ ↔ ran (𝐹‘𝑥) ≠ ∅) |
| 19 | 16, 18 | sylib 218 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ≠ ∅) |
| 20 | 7, 19 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ≠ ∅) |
| 21 | 1, 2, 3, 4 | rpnnen1lem3 13003 | . . 3 ⊢ (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) |
| 22 | breq2 5127 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥)) | |
| 23 | 22 | ralbidv 3165 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥)) |
| 24 | 23 | rspcev 3605 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
| 25 | 21, 24 | mpdan 687 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
| 26 | suprcl 12210 | . 2 ⊢ ((ran (𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) | |
| 27 | 11, 20, 25, 26 | syl3anc 1372 | 1 ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 {crab 3419 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 class class class wbr 5123 ↦ cmpt 5205 dom cdm 5665 ran crn 5666 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 supcsup 9462 ℝcr 11136 1c1 11138 < clt 11277 ≤ cle 11278 / cdiv 11902 ℕcn 12248 ℤcz 12596 ℚcq 12972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-n0 12510 df-z 12597 df-q 12973 |
| This theorem is referenced by: rpnnen1lem5 13005 |
| Copyright terms: Public domain | W3C validator |