| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen1lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen1 12884. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| rpnnen1lem.n | ⊢ ℕ ∈ V |
| rpnnen1lem.q | ⊢ ℚ ∈ V |
| Ref | Expression |
|---|---|
| rpnnen1lem4 | ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | . . . . 5 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
| 2 | rpnnen1lem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | |
| 3 | rpnnen1lem.n | . . . . 5 ⊢ ℕ ∈ V | |
| 4 | rpnnen1lem.q | . . . . 5 ⊢ ℚ ∈ V | |
| 5 | 1, 2, 3, 4 | rpnnen1lem1 12879 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) |
| 6 | 4, 3 | elmap 8798 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹‘𝑥):ℕ⟶ℚ) |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥):ℕ⟶ℚ) |
| 8 | frn 6659 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℚ) | |
| 9 | qssre 12860 | . . . 4 ⊢ ℚ ⊆ ℝ | |
| 10 | 8, 9 | sstrdi 3948 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℝ) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ⊆ ℝ) |
| 12 | 1nn 12139 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 13 | 12 | ne0ii 4295 | . . . . 5 ⊢ ℕ ≠ ∅ |
| 14 | fdm 6661 | . . . . . 6 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) = ℕ) | |
| 15 | 14 | neeq1d 2984 | . . . . 5 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → (dom (𝐹‘𝑥) ≠ ∅ ↔ ℕ ≠ ∅)) |
| 16 | 13, 15 | mpbiri 258 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) ≠ ∅) |
| 17 | dm0rn0 5867 | . . . . 5 ⊢ (dom (𝐹‘𝑥) = ∅ ↔ ran (𝐹‘𝑥) = ∅) | |
| 18 | 17 | necon3bii 2977 | . . . 4 ⊢ (dom (𝐹‘𝑥) ≠ ∅ ↔ ran (𝐹‘𝑥) ≠ ∅) |
| 19 | 16, 18 | sylib 218 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ≠ ∅) |
| 20 | 7, 19 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ≠ ∅) |
| 21 | 1, 2, 3, 4 | rpnnen1lem3 12880 | . . 3 ⊢ (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) |
| 22 | breq2 5096 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥)) | |
| 23 | 22 | ralbidv 3152 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥)) |
| 24 | 23 | rspcev 3577 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
| 25 | 21, 24 | mpdan 687 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
| 26 | suprcl 12085 | . 2 ⊢ ((ran (𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) | |
| 27 | 11, 20, 25, 26 | syl3anc 1373 | 1 ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3394 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ran crn 5620 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 supcsup 9330 ℝcr 11008 1c1 11010 < clt 11149 ≤ cle 11150 / cdiv 11777 ℕcn 12128 ℤcz 12471 ℚcq 12849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-q 12850 |
| This theorem is referenced by: rpnnen1lem5 12882 |
| Copyright terms: Public domain | W3C validator |