Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen1lem4 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen1 12723. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
rpnnen1lem.n | ⊢ ℕ ∈ V |
rpnnen1lem.q | ⊢ ℚ ∈ V |
Ref | Expression |
---|---|
rpnnen1lem4 | ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpnnen1lem.1 | . . . . 5 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
2 | rpnnen1lem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | |
3 | rpnnen1lem.n | . . . . 5 ⊢ ℕ ∈ V | |
4 | rpnnen1lem.q | . . . . 5 ⊢ ℚ ∈ V | |
5 | 1, 2, 3, 4 | rpnnen1lem1 12718 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) |
6 | 4, 3 | elmap 8659 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹‘𝑥):ℕ⟶ℚ) |
7 | 5, 6 | sylib 217 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥):ℕ⟶ℚ) |
8 | frn 6607 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℚ) | |
9 | qssre 12699 | . . . 4 ⊢ ℚ ⊆ ℝ | |
10 | 8, 9 | sstrdi 3933 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℝ) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ⊆ ℝ) |
12 | 1nn 11984 | . . . . . 6 ⊢ 1 ∈ ℕ | |
13 | 12 | ne0ii 4271 | . . . . 5 ⊢ ℕ ≠ ∅ |
14 | fdm 6609 | . . . . . 6 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) = ℕ) | |
15 | 14 | neeq1d 3003 | . . . . 5 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → (dom (𝐹‘𝑥) ≠ ∅ ↔ ℕ ≠ ∅)) |
16 | 13, 15 | mpbiri 257 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) ≠ ∅) |
17 | dm0rn0 5834 | . . . . 5 ⊢ (dom (𝐹‘𝑥) = ∅ ↔ ran (𝐹‘𝑥) = ∅) | |
18 | 17 | necon3bii 2996 | . . . 4 ⊢ (dom (𝐹‘𝑥) ≠ ∅ ↔ ran (𝐹‘𝑥) ≠ ∅) |
19 | 16, 18 | sylib 217 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ≠ ∅) |
20 | 7, 19 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ≠ ∅) |
21 | 1, 2, 3, 4 | rpnnen1lem3 12719 | . . 3 ⊢ (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) |
22 | breq2 5078 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥)) | |
23 | 22 | ralbidv 3112 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥)) |
24 | 23 | rspcev 3561 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
25 | 21, 24 | mpdan 684 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
26 | suprcl 11935 | . 2 ⊢ ((ran (𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) | |
27 | 11, 20, 25, 26 | syl3anc 1370 | 1 ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 supcsup 9199 ℝcr 10870 1c1 10872 < clt 11009 ≤ cle 11010 / cdiv 11632 ℕcn 11973 ℤcz 12319 ℚcq 12688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-q 12689 |
This theorem is referenced by: rpnnen1lem5 12721 |
Copyright terms: Public domain | W3C validator |