| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen1lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen1 12881. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| rpnnen1lem.n | ⊢ ℕ ∈ V |
| rpnnen1lem.q | ⊢ ℚ ∈ V |
| Ref | Expression |
|---|---|
| rpnnen1lem4 | ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | . . . . 5 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
| 2 | rpnnen1lem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | |
| 3 | rpnnen1lem.n | . . . . 5 ⊢ ℕ ∈ V | |
| 4 | rpnnen1lem.q | . . . . 5 ⊢ ℚ ∈ V | |
| 5 | 1, 2, 3, 4 | rpnnen1lem1 12876 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) |
| 6 | 4, 3 | elmap 8795 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹‘𝑥):ℕ⟶ℚ) |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥):ℕ⟶ℚ) |
| 8 | frn 6658 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℚ) | |
| 9 | qssre 12857 | . . . 4 ⊢ ℚ ⊆ ℝ | |
| 10 | 8, 9 | sstrdi 3942 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℝ) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ⊆ ℝ) |
| 12 | 1nn 12136 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 13 | 12 | ne0ii 4291 | . . . . 5 ⊢ ℕ ≠ ∅ |
| 14 | fdm 6660 | . . . . . 6 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) = ℕ) | |
| 15 | 14 | neeq1d 2987 | . . . . 5 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → (dom (𝐹‘𝑥) ≠ ∅ ↔ ℕ ≠ ∅)) |
| 16 | 13, 15 | mpbiri 258 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) ≠ ∅) |
| 17 | dm0rn0 5863 | . . . . 5 ⊢ (dom (𝐹‘𝑥) = ∅ ↔ ran (𝐹‘𝑥) = ∅) | |
| 18 | 17 | necon3bii 2980 | . . . 4 ⊢ (dom (𝐹‘𝑥) ≠ ∅ ↔ ran (𝐹‘𝑥) ≠ ∅) |
| 19 | 16, 18 | sylib 218 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ≠ ∅) |
| 20 | 7, 19 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ≠ ∅) |
| 21 | 1, 2, 3, 4 | rpnnen1lem3 12877 | . . 3 ⊢ (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) |
| 22 | breq2 5093 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥)) | |
| 23 | 22 | ralbidv 3155 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥)) |
| 24 | 23 | rspcev 3572 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
| 25 | 21, 24 | mpdan 687 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
| 26 | suprcl 12082 | . 2 ⊢ ((ran (𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) | |
| 27 | 11, 20, 25, 26 | syl3anc 1373 | 1 ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 ran crn 5615 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 supcsup 9324 ℝcr 11005 1c1 11007 < clt 11146 ≤ cle 11147 / cdiv 11774 ℕcn 12125 ℤcz 12468 ℚcq 12846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-q 12847 |
| This theorem is referenced by: rpnnen1lem5 12879 |
| Copyright terms: Public domain | W3C validator |