| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen1lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen1 12948. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| rpnnen1lem.n | ⊢ ℕ ∈ V |
| rpnnen1lem.q | ⊢ ℚ ∈ V |
| Ref | Expression |
|---|---|
| rpnnen1lem4 | ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | . . . . 5 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
| 2 | rpnnen1lem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | |
| 3 | rpnnen1lem.n | . . . . 5 ⊢ ℕ ∈ V | |
| 4 | rpnnen1lem.q | . . . . 5 ⊢ ℚ ∈ V | |
| 5 | 1, 2, 3, 4 | rpnnen1lem1 12943 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) |
| 6 | 4, 3 | elmap 8846 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹‘𝑥):ℕ⟶ℚ) |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥):ℕ⟶ℚ) |
| 8 | frn 6697 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℚ) | |
| 9 | qssre 12924 | . . . 4 ⊢ ℚ ⊆ ℝ | |
| 10 | 8, 9 | sstrdi 3961 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℝ) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ⊆ ℝ) |
| 12 | 1nn 12198 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 13 | 12 | ne0ii 4309 | . . . . 5 ⊢ ℕ ≠ ∅ |
| 14 | fdm 6699 | . . . . . 6 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) = ℕ) | |
| 15 | 14 | neeq1d 2985 | . . . . 5 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → (dom (𝐹‘𝑥) ≠ ∅ ↔ ℕ ≠ ∅)) |
| 16 | 13, 15 | mpbiri 258 | . . . 4 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) ≠ ∅) |
| 17 | dm0rn0 5890 | . . . . 5 ⊢ (dom (𝐹‘𝑥) = ∅ ↔ ran (𝐹‘𝑥) = ∅) | |
| 18 | 17 | necon3bii 2978 | . . . 4 ⊢ (dom (𝐹‘𝑥) ≠ ∅ ↔ ran (𝐹‘𝑥) ≠ ∅) |
| 19 | 16, 18 | sylib 218 | . . 3 ⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ≠ ∅) |
| 20 | 7, 19 | syl 17 | . 2 ⊢ (𝑥 ∈ ℝ → ran (𝐹‘𝑥) ≠ ∅) |
| 21 | 1, 2, 3, 4 | rpnnen1lem3 12944 | . . 3 ⊢ (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) |
| 22 | breq2 5113 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥)) | |
| 23 | 22 | ralbidv 3157 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥)) |
| 24 | 23 | rspcev 3591 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
| 25 | 21, 24 | mpdan 687 | . 2 ⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
| 26 | suprcl 12149 | . 2 ⊢ ((ran (𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) | |
| 27 | 11, 20, 25, 26 | syl3anc 1373 | 1 ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 ⊆ wss 3916 ∅c0 4298 class class class wbr 5109 ↦ cmpt 5190 dom cdm 5640 ran crn 5641 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 supcsup 9397 ℝcr 11073 1c1 11075 < clt 11214 ≤ cle 11215 / cdiv 11841 ℕcn 12187 ℤcz 12535 ℚcq 12913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-n0 12449 df-z 12536 df-q 12914 |
| This theorem is referenced by: rpnnen1lem5 12946 |
| Copyright terms: Public domain | W3C validator |