MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem4 Structured version   Visualization version   GIF version

Theorem rpnnen1lem4 12102
Description: Lemma for rpnnen1 12105. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem4 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.1 . . . . 5 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
2 rpnnen1lem.2 . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
3 rpnnen1lem.n . . . . 5 ℕ ∈ V
4 rpnnen1lem.q . . . . 5 ℚ ∈ V
51, 2, 3, 4rpnnen1lem1 12100 . . . 4 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑𝑚 ℕ))
64, 3elmap 8151 . . . 4 ((𝐹𝑥) ∈ (ℚ ↑𝑚 ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
75, 6sylib 210 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
8 frn 6284 . . . 4 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℚ)
9 qssre 12081 . . . 4 ℚ ⊆ ℝ
108, 9syl6ss 3839 . . 3 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℝ)
117, 10syl 17 . 2 (𝑥 ∈ ℝ → ran (𝐹𝑥) ⊆ ℝ)
12 1nn 11363 . . . . . 6 1 ∈ ℕ
1312ne0ii 4153 . . . . 5 ℕ ≠ ∅
14 fdm 6286 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) = ℕ)
1514neeq1d 3058 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → (dom (𝐹𝑥) ≠ ∅ ↔ ℕ ≠ ∅))
1613, 15mpbiri 250 . . . 4 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) ≠ ∅)
17 dm0rn0 5574 . . . . 5 (dom (𝐹𝑥) = ∅ ↔ ran (𝐹𝑥) = ∅)
1817necon3bii 3051 . . . 4 (dom (𝐹𝑥) ≠ ∅ ↔ ran (𝐹𝑥) ≠ ∅)
1916, 18sylib 210 . . 3 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ≠ ∅)
207, 19syl 17 . 2 (𝑥 ∈ ℝ → ran (𝐹𝑥) ≠ ∅)
211, 2, 3, 4rpnnen1lem3 12101 . . 3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
22 breq2 4877 . . . . 5 (𝑦 = 𝑥 → (𝑛𝑦𝑛𝑥))
2322ralbidv 3195 . . . 4 (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2423rspcev 3526 . . 3 ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
2521, 24mpdan 680 . 2 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
26 suprcl 11313 . 2 ((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
2711, 20, 25, 26syl3anc 1496 1 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  wne 2999  wral 3117  wrex 3118  {crab 3121  Vcvv 3414  wss 3798  c0 4144   class class class wbr 4873  cmpt 4952  dom cdm 5342  ran crn 5343  wf 6119  cfv 6123  (class class class)co 6905  𝑚 cmap 8122  supcsup 8615  cr 10251  1c1 10253   < clt 10391  cle 10392   / cdiv 11009  cn 11350  cz 11704  cq 12071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-n0 11619  df-z 11705  df-q 12072
This theorem is referenced by:  rpnnen1lem5  12103
  Copyright terms: Public domain W3C validator