MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem4 Structured version   Visualization version   GIF version

Theorem rpnnen1lem4 12878
Description: Lemma for rpnnen1 12881. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem4 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.1 . . . . 5 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
2 rpnnen1lem.2 . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
3 rpnnen1lem.n . . . . 5 ℕ ∈ V
4 rpnnen1lem.q . . . . 5 ℚ ∈ V
51, 2, 3, 4rpnnen1lem1 12876 . . . 4 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
64, 3elmap 8795 . . . 4 ((𝐹𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
75, 6sylib 218 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
8 frn 6658 . . . 4 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℚ)
9 qssre 12857 . . . 4 ℚ ⊆ ℝ
108, 9sstrdi 3942 . . 3 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℝ)
117, 10syl 17 . 2 (𝑥 ∈ ℝ → ran (𝐹𝑥) ⊆ ℝ)
12 1nn 12136 . . . . . 6 1 ∈ ℕ
1312ne0ii 4291 . . . . 5 ℕ ≠ ∅
14 fdm 6660 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) = ℕ)
1514neeq1d 2987 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → (dom (𝐹𝑥) ≠ ∅ ↔ ℕ ≠ ∅))
1613, 15mpbiri 258 . . . 4 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) ≠ ∅)
17 dm0rn0 5863 . . . . 5 (dom (𝐹𝑥) = ∅ ↔ ran (𝐹𝑥) = ∅)
1817necon3bii 2980 . . . 4 (dom (𝐹𝑥) ≠ ∅ ↔ ran (𝐹𝑥) ≠ ∅)
1916, 18sylib 218 . . 3 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ≠ ∅)
207, 19syl 17 . 2 (𝑥 ∈ ℝ → ran (𝐹𝑥) ≠ ∅)
211, 2, 3, 4rpnnen1lem3 12877 . . 3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
22 breq2 5093 . . . . 5 (𝑦 = 𝑥 → (𝑛𝑦𝑛𝑥))
2322ralbidv 3155 . . . 4 (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2423rspcev 3572 . . 3 ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
2521, 24mpdan 687 . 2 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
26 suprcl 12082 . 2 ((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
2711, 20, 25, 26syl3anc 1373 1 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  supcsup 9324  cr 11005  1c1 11007   < clt 11146  cle 11147   / cdiv 11774  cn 12125  cz 12468  cq 12846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-q 12847
This theorem is referenced by:  rpnnen1lem5  12879
  Copyright terms: Public domain W3C validator