MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubglem Structured version   Visualization version   GIF version

Theorem cnsubglem 20155
Description: Lemma for resubdrg 20315 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
cnsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnsubglem.2 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
cnsubglem.3 (𝑥𝐴 → -𝑥𝐴)
cnsubglem.4 𝐵𝐴
Assertion
Ref Expression
cnsubglem 𝐴 ∈ (SubGrp‘ℂfld)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem cnsubglem
StepHypRef Expression
1 cnsubglem.1 . . 3 (𝑥𝐴𝑥 ∈ ℂ)
21ssriv 3831 . 2 𝐴 ⊆ ℂ
3 cnsubglem.4 . . 3 𝐵𝐴
43ne0ii 4153 . 2 𝐴 ≠ ∅
5 cnsubglem.2 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
65ralrimiva 3175 . . . 4 (𝑥𝐴 → ∀𝑦𝐴 (𝑥 + 𝑦) ∈ 𝐴)
7 cnfldneg 20132 . . . . . 6 (𝑥 ∈ ℂ → ((invg‘ℂfld)‘𝑥) = -𝑥)
81, 7syl 17 . . . . 5 (𝑥𝐴 → ((invg‘ℂfld)‘𝑥) = -𝑥)
9 cnsubglem.3 . . . . 5 (𝑥𝐴 → -𝑥𝐴)
108, 9eqeltrd 2906 . . . 4 (𝑥𝐴 → ((invg‘ℂfld)‘𝑥) ∈ 𝐴)
116, 10jca 507 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴))
1211rgen 3131 . 2 𝑥𝐴 (∀𝑦𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)
13 cnring 20128 . . . 4 fld ∈ Ring
14 ringgrp 18906 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ Grp)
1513, 14ax-mp 5 . . 3 fld ∈ Grp
16 cnfldbas 20110 . . . 4 ℂ = (Base‘ℂfld)
17 cnfldadd 20111 . . . 4 + = (+g‘ℂfld)
18 eqid 2825 . . . 4 (invg‘ℂfld) = (invg‘ℂfld)
1916, 17, 18issubg2 17960 . . 3 (ℂfld ∈ Grp → (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴))))
2015, 19ax-mp 5 . 2 (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)))
212, 4, 12, 20mpbir3an 1445 1 𝐴 ∈ (SubGrp‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wss 3798  c0 4144  cfv 6123  (class class class)co 6905  cc 10250   + caddc 10255  -cneg 10586  Grpcgrp 17776  invgcminusg 17777  SubGrpcsubg 17939  Ringcrg 18901  fldccnfld 20106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-subg 17942  df-cmn 18548  df-mgp 18844  df-ring 18903  df-cring 18904  df-cnfld 20107
This theorem is referenced by:  cnsubrglem  20156  zringmulg  20186  remulg  20314
  Copyright terms: Public domain W3C validator