![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnsubglem | Structured version Visualization version GIF version |
Description: Lemma for resubdrg 21604 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
cnsubglem.4 | ⊢ 𝐵 ∈ 𝐴 |
Ref | Expression |
---|---|
cnsubglem | ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3983 | . 2 ⊢ 𝐴 ⊆ ℂ |
3 | cnsubglem.4 | . . 3 ⊢ 𝐵 ∈ 𝐴 | |
4 | 3 | ne0ii 4340 | . 2 ⊢ 𝐴 ≠ ∅ |
5 | cnsubglem.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
6 | 5 | ralrimiva 3136 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴) |
7 | cnfldneg 21387 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → ((invg‘ℂfld)‘𝑥) = -𝑥) | |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invg‘ℂfld)‘𝑥) = -𝑥) |
9 | cnsubglem.3 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
10 | 8, 9 | eqeltrd 2826 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invg‘ℂfld)‘𝑥) ∈ 𝐴) |
11 | 6, 10 | jca 510 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)) |
12 | 11 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴) |
13 | cnring 21382 | . . 3 ⊢ ℂfld ∈ Ring | |
14 | ringgrp 20221 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
15 | cnfldbas 21347 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
16 | cnfldadd 21349 | . . . 4 ⊢ + = (+g‘ℂfld) | |
17 | eqid 2726 | . . . 4 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
18 | 15, 16, 17 | issubg2 19135 | . . 3 ⊢ (ℂfld ∈ Grp → (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)))) |
19 | 13, 14, 18 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴))) |
20 | 2, 4, 12, 19 | mpbir3an 1338 | 1 ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ⊆ wss 3947 ∅c0 4325 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 + caddc 11161 -cneg 11495 Grpcgrp 18928 invgcminusg 18929 SubGrpcsubg 19114 Ringcrg 20216 ℂfldccnfld 21343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-addf 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-subg 19117 df-cmn 19780 df-mgp 20118 df-ring 20218 df-cring 20219 df-cnfld 21344 |
This theorem is referenced by: cnsubrglem 21413 cnsubrglemOLD 21414 zringsub 21445 zringmulg 21446 remulg 21603 |
Copyright terms: Public domain | W3C validator |