![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnsubglem | Structured version Visualization version GIF version |
Description: Lemma for resubdrg 21160 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
cnsubglem.4 | ⊢ 𝐵 ∈ 𝐴 |
Ref | Expression |
---|---|
cnsubglem | ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3986 | . 2 ⊢ 𝐴 ⊆ ℂ |
3 | cnsubglem.4 | . . 3 ⊢ 𝐵 ∈ 𝐴 | |
4 | 3 | ne0ii 4337 | . 2 ⊢ 𝐴 ≠ ∅ |
5 | cnsubglem.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
6 | 5 | ralrimiva 3146 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴) |
7 | cnfldneg 20970 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → ((invg‘ℂfld)‘𝑥) = -𝑥) | |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((invg‘ℂfld)‘𝑥) = -𝑥) |
9 | cnsubglem.3 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
10 | 8, 9 | eqeltrd 2833 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((invg‘ℂfld)‘𝑥) ∈ 𝐴) |
11 | 6, 10 | jca 512 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)) |
12 | 11 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴) |
13 | cnring 20966 | . . 3 ⊢ ℂfld ∈ Ring | |
14 | ringgrp 20060 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
15 | cnfldbas 20947 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
16 | cnfldadd 20948 | . . . 4 ⊢ + = (+g‘ℂfld) | |
17 | eqid 2732 | . . . 4 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
18 | 15, 16, 17 | issubg2 19020 | . . 3 ⊢ (ℂfld ∈ Grp → (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴)))) |
19 | 13, 14, 18 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (SubGrp‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 ∧ ((invg‘ℂfld)‘𝑥) ∈ 𝐴))) |
20 | 2, 4, 12, 19 | mpbir3an 1341 | 1 ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ⊆ wss 3948 ∅c0 4322 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 + caddc 11112 -cneg 11444 Grpcgrp 18818 invgcminusg 18819 SubGrpcsubg 18999 Ringcrg 20055 ℂfldccnfld 20943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-subg 19002 df-cmn 19649 df-mgp 19987 df-ring 20057 df-cring 20058 df-cnfld 20944 |
This theorem is referenced by: cnsubrglem 20994 zringsub 21024 zringmulg 21025 remulg 21159 |
Copyright terms: Public domain | W3C validator |