| Metamath
Proof Explorer Theorem List (p. 263 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dgrmul 26201 | The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹 ∘f · 𝐺)) = (𝑀 + 𝑁)) | ||
| Theorem | dgrmulc 26202 | Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹)) | ||
| Theorem | dgrsub 26203 | The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | ||
| Theorem | dgrcolem1 26204* | The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁)) | ||
| Theorem | dgrcolem2 26205* | Lemma for dgrco 26206. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ 𝐴 = (coeff‘𝐹) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 = (𝐷 + 1)) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) ⇒ ⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) | ||
| Theorem | dgrco 26206 | The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) | ||
| Theorem | plycjlem 26207* | Lemma for plycj 26208 and coecj 26209. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) | ||
| Theorem | plycj 26208* | The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | ||
| Theorem | coecj 26209 | Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) | ||
| Theorem | plycjOLD 26210* | Obsolete version of plycj 26208 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | ||
| Theorem | coecjOLD 26211 | Obsolete version of coecj 26209 as of 22-Sep-2025. Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) | ||
| Theorem | plyrecj 26212 | A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) | ||
| Theorem | plymul0or 26213 | Polynomial multiplication has no zero divisors. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹 ∘f · 𝐺) = 0𝑝 ↔ (𝐹 = 0𝑝 ∨ 𝐺 = 0𝑝))) | ||
| Theorem | ofmulrt 26214 | The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (◡(𝐹 ∘f · 𝐺) “ {0}) = ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0}))) | ||
| Theorem | plyreres 26215 | Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) | ||
| Theorem | dvply1 26216* | Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) | ||
| Theorem | dvply2g 26217 | The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11083. (Revised by GG, 30-Apr-2025.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Theorem | dvply2gOLD 26218 | Obsolete version of dvply2g 26217 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Theorem | dvply2 26219 | The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈ (Poly‘ℂ)) | ||
| Theorem | dvnply2 26220 | Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) | ||
| Theorem | dvnply 26221 | Polynomials have polynomials as derivatives of all orders. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘ℂ)) | ||
| Theorem | plycpn 26222 | Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) | ||
| Syntax | cquot 26223 | Extend class notation to include the quotient of a polynomial division. |
| class quot | ||
| Definition | df-quot 26224* | Define the quotient function on polynomials. This is the 𝑞 of the expression 𝑓 = 𝑔 · 𝑞 + 𝑟 in the division algorithm. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (℩𝑞 ∈ (Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)))) | ||
| Theorem | quotval 26225* | Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
| Theorem | plydivlem1 26226* | Lemma for plydivalg 26232. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → 0 ∈ 𝑆) | ||
| Theorem | plydivlem2 26227* | Lemma for plydivalg 26232. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝜑 ∧ 𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆)) | ||
| Theorem | plydivlem3 26228* | Lemma for plydivex 26230. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plydivlem4 26229* | Lemma for plydivex 26230. Induction step. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → (𝑀 − 𝑁) = 𝐷) & ⊢ (𝜑 → 𝐹 ≠ 0𝑝) & ⊢ 𝑈 = (𝑓 ∘f − (𝐺 ∘f · 𝑝)) & ⊢ 𝐻 = (𝑧 ∈ ℂ ↦ (((𝐴‘𝑀) / (𝐵‘𝑁)) · (𝑧↑𝐷))) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − 𝑁) < 𝐷) → ∃𝑝 ∈ (Poly‘𝑆)(𝑈 = 0𝑝 ∨ (deg‘𝑈) < 𝑁))) & ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < 𝑁)) | ||
| Theorem | plydivex 26230* | Lemma for plydivalg 26232. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plydiveu 26231* | Lemma for plydivalg 26232. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → 𝑞 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) & ⊢ 𝑇 = (𝐹 ∘f − (𝐺 ∘f · 𝑝)) & ⊢ (𝜑 → 𝑝 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (𝑇 = 0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺))) ⇒ ⊢ (𝜑 → 𝑝 = 𝑞) | ||
| Theorem | plydivalg 26232* | The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹 − 𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | quotlem 26233* | Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
| Theorem | quotcl 26234* | The quotient of two polynomials in a field 𝑆 is also in the field. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) ⇒ ⊢ (𝜑 → (𝐹 quot 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | quotcl2 26235 | Closure of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | quotdgr 26236 | Remainder property of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plyremlem 26237 | Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) ⇒ ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) | ||
| Theorem | plyrem 26238 | The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 16451). If a polynomial 𝐹 is divided by the linear factor 𝑥 − 𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹‘𝐴)})) | ||
| Theorem | facth 26239 | The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) | ||
| Theorem | fta1lem 26240* | Lemma for fta1 26241. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝})) & ⊢ (𝜑 → (deg‘𝐹) = (𝐷 + 1)) & ⊢ (𝜑 → 𝐴 ∈ (◡𝐹 “ {0})) & ⊢ (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((◡𝑔 “ {0}) ∈ Fin ∧ (♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔)))) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) | ||
| Theorem | fta1 26241 | The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg(𝐹) roots. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (◡𝐹 “ {0}) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) | ||
| Theorem | quotcan 26242 | Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐻 = (𝐹 ∘f · 𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹) | ||
| Theorem | vieta1lem1 26243* | Lemma for vieta1 26245. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐷 + 1) = 𝑁) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) & ⊢ 𝑄 = (𝐹 quot (Xp ∘f − (ℂ × {𝑧}))) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄))) | ||
| Theorem | vieta1lem2 26244* | Lemma for vieta1 26245: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp − 𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (◡𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥 ∈ 𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴‘𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp − 𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷 − 𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥 ∈ 𝑅𝑥 = -𝐴‘𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐷 + 1) = 𝑁) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) & ⊢ 𝑄 = (𝐹 quot (Xp ∘f − (ℂ × {𝑧}))) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | ||
| Theorem | vieta1 26245* | The first-order Vieta's formula (see http://en.wikipedia.org/wiki/Vieta%27s_formulas). If a polynomial of degree 𝑁 has 𝑁 distinct roots, then the sum over these roots can be calculated as -𝐴(𝑁 − 1) / 𝐴(𝑁). (If the roots are not distinct, then this formula is still true but must double-count some of the roots according to their multiplicities.) (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | ||
| Theorem | plyexmo 26246* | An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.) |
| ⊢ ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝 ↾ 𝐷) = 𝐹)) | ||
| Syntax | caa 26247 | Extend class notation to include the set of algebraic numbers. |
| class 𝔸 | ||
| Definition | df-aa 26248 | Define the set of algebraic numbers. An algebraic number is a root of a nonzero polynomial over the integers. Here we construct it as the union of all kernels (preimages of {0}) of all polynomials in (Poly‘ℤ), except the zero polynomial 0𝑝. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) | ||
| Theorem | elaa 26249* | Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | ||
| Theorem | aacn 26250 | An algebraic number is a complex number. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | ||
| Theorem | aasscn 26251 | The algebraic numbers are a subset of the complex numbers. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝔸 ⊆ ℂ | ||
| Theorem | elqaalem1 26252* | Lemma for elqaa 26255. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) | ||
| Theorem | elqaalem2 26253* | Lemma for elqaa 26255. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) & ⊢ 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁‘𝐾))) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁‘𝐾)) = 0) | ||
| Theorem | elqaalem3 26254* | Lemma for elqaa 26255. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝔸) | ||
| Theorem | elqaa 26255* | The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa 26249 are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof shortened by AV, 3-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | ||
| Theorem | qaa 26256 | Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸) | ||
| Theorem | qssaa 26257 | The rational numbers are contained in the algebraic numbers. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ ℚ ⊆ 𝔸 | ||
| Theorem | iaa 26258 | The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ i ∈ 𝔸 | ||
| Theorem | aareccl 26259 | The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸) | ||
| Theorem | aacjcl 26260 | The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) | ||
| Theorem | aannenlem1 26261* | Lemma for aannen 26264. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ (𝐴 ∈ ℕ0 → (𝐻‘𝐴) ∈ Fin) | ||
| Theorem | aannenlem2 26262* | Lemma for aannen 26264. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ 𝔸 = ∪ ran 𝐻 | ||
| Theorem | aannenlem3 26263* | The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ 𝔸 ≈ ℕ | ||
| Theorem | aannen 26264 | The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝔸 ≈ ℕ | ||
| Theorem | aalioulem1 26265 | Lemma for aaliou 26271. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑋 ∈ ℤ) & ⊢ (𝜑 → 𝑌 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ) | ||
| Theorem | aalioulem2 26266* | Lemma for aaliou 26271. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem3 26267* | Lemma for aaliou 26271. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑟 ∈ ℝ ((abs‘(𝐴 − 𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑟))) ≤ (abs‘(𝐴 − 𝑟)))) | ||
| Theorem | aalioulem4 26268* | Lemma for aaliou 26271. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem5 26269* | Lemma for aaliou 26271. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem6 26270* | Lemma for aaliou 26271. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou 26271* | Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | geolim3 26272* | Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐵) < 1) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵))) | ||
| Theorem | aaliou2 26273* | Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou2b 26274* | Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou3lem1 26275* | Lemma for aaliou3 26284. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) | ||
| Theorem | aaliou3lem2 26276* | Lemma for aaliou3 26284. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐵) ∈ (0(,](𝐺‘𝐵))) | ||
| Theorem | aaliou3lem3 26277* | Lemma for aaliou3 26284. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ≤ (2 · (2↑-(!‘𝐴))))) | ||
| Theorem | aaliou3lem8 26278* | Lemma for aaliou3 26284. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴))) | ||
| Theorem | aaliou3lem4 26279* | Lemma for aaliou3 26284. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ 𝐿 ∈ ℝ | ||
| Theorem | aaliou3lem5 26280* | Lemma for aaliou3 26284. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) | ||
| Theorem | aaliou3lem6 26281* | Lemma for aaliou3 26284. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) ∈ ℤ) | ||
| Theorem | aaliou3lem7 26282* | Lemma for aaliou3 26284. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻‘𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) | ||
| Theorem | aaliou3lem9 26283* | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ ¬ 𝐿 ∈ 𝔸 | ||
| Theorem | aaliou3 26284 | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014.) |
| ⊢ Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∉ 𝔸 | ||
| Syntax | ctayl 26285 | Taylor polynomial of a function. |
| class Tayl | ||
| Syntax | cana 26286 | The class of analytic functions. |
| class Ana | ||
| Definition | df-tayl 26287* | Define the Taylor polynomial or Taylor series of a function. TODO-AV: 𝑛 ∈ (ℕ0 ∪ {+∞}) should be replaced by 𝑛 ∈ ℕ0*. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 ∈ ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) | ||
| Definition | df-ana 26288* | Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) | ||
| Theorem | taylfvallem1 26289* | Lemma for taylfval 26291. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
| Theorem | taylfvallem 26290* | Lemma for taylfval 26291. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)))) ⊆ ℂ) | ||
| Theorem | taylfval 26291* |
Define the Taylor polynomial of a function. The constant Tayl is a
function of five arguments: 𝑆 is the base set with respect to
evaluate the derivatives (generally ℝ or
ℂ), 𝐹 is the
function we are approximating, at point 𝐵, to order 𝑁. The
result is a polynomial function of 𝑥.
This "extended" version of taylpfval 26297 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) | ||
| Theorem | eltayl 26292* | Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))))))) | ||
| Theorem | taylf 26293* | The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:dom 𝑇⟶ℂ) | ||
| Theorem | tayl0 26294* | The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇‘𝐵) = (𝐹‘𝐵))) | ||
| Theorem | taylplem1 26295* | Lemma for taylpfval 26297 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | ||
| Theorem | taylplem2 26296* | Lemma for taylpfval 26297 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
| Theorem | taylpfval 26297* | Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) | ||
| Theorem | taylpf 26298 | The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:ℂ⟶ℂ) | ||
| Theorem | taylpval 26299* | Value of the Taylor polynomial. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑇‘𝑋) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))) | ||
| Theorem | taylply2 26300* | The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 26302 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11083. (Revised by GG, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |