Home | Metamath
Proof Explorer Theorem List (p. 263 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29280) |
Hilbert Space Explorer
(29281-30803) |
Users' Mathboxes
(30804-46521) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | igamcl 26201 | Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) ∈ ℂ) | ||
Theorem | gamigam 26202 | The Gamma function is the inverse of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) = (1 / (1/Γ‘𝐴))) | ||
Theorem | lgamcvg 26203* | The series 𝐺 converges to log Γ(𝐴) + log(𝐴). (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) | ||
Theorem | lgamcvg2 26204* | The series 𝐺 converges to log Γ(𝐴 + 1). (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ⇝ (log Γ‘(𝐴 + 1))) | ||
Theorem | gamcvg 26205* | The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) | ||
Theorem | lgamp1 26206 | The functional equation of the (log) Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘(𝐴 + 1)) = ((log Γ‘𝐴) + (log‘𝐴))) | ||
Theorem | gamp1 26207 | The functional equation of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘(𝐴 + 1)) = ((Γ‘𝐴) · 𝐴)) | ||
Theorem | gamcvg2lem 26208* | Lemma for gamcvg2 26209. (Contributed by Mario Carneiro, 10-Jul-2017.) |
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹)) | ||
Theorem | gamcvg2 26209* | An infinite product expression for the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( · , 𝐹) ⇝ ((Γ‘𝐴) · 𝐴)) | ||
Theorem | regamcl 26210 | The Gamma function is real for real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℝ) | ||
Theorem | relgamcl 26211 | The log-Gamma function is real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ ℝ+ → (log Γ‘𝐴) ∈ ℝ) | ||
Theorem | rpgamcl 26212 | The log-Gamma function is positive real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ ℝ+ → (Γ‘𝐴) ∈ ℝ+) | ||
Theorem | lgam1 26213 | The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (log Γ‘1) = 0 | ||
Theorem | gam1 26214 | The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (Γ‘1) = 1 | ||
Theorem | facgam 26215 | The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) = (Γ‘(𝑁 + 1))) | ||
Theorem | gamfac 26216 | The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝑁 ∈ ℕ → (Γ‘𝑁) = (!‘(𝑁 − 1))) | ||
Theorem | wilthlem1 26217 | The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃ℤ are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 16487, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃ℤ. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1)))) | ||
Theorem | wilthlem2 26218* |
Lemma for wilth 26220: induction step. The "hand proof"
version of this
theorem works by writing out the list of all numbers from 1 to
𝑃
− 1 in pairs such that a number is paired with its inverse.
Every number has a unique inverse different from itself except 1
and 𝑃 − 1, and so each pair
multiplies to 1, and 1 and
𝑃
− 1≡-1 multiply to -1, so the full
product is equal
to -1. Here we make this precise by doing the
product pair by
pair.
The induction hypothesis says that every subset 𝑆 of 1...(𝑃 − 1) that is closed under inverse (i.e. all pairs are matched up) and contains 𝑃 − 1 multiplies to -1 mod 𝑃. Given such a set, we take out one element 𝑧 ≠ 𝑃 − 1. If there are no such elements, then 𝑆 = {𝑃 − 1} which forms the base case. Otherwise, 𝑆 ∖ {𝑧, 𝑧↑-1} is also closed under inverse and contains 𝑃 − 1, so the induction hypothesis says that this equals -1; and the remaining two elements are either equal to each other, in which case wilthlem1 26217 gives that 𝑧 = 1 or 𝑃 − 1, and we've already excluded the second case, so the product gives 1; or 𝑧 ≠ 𝑧↑-1 and their product is 1. In either case the accumulated product is unaffected. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝑇 = (mulGrp‘ℂfld) & ⊢ 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)} & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑆 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ⇒ ⊢ (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)) | ||
Theorem | wilthlem3 26219* | Lemma for wilth 26220. Here we round out the argument of wilthlem2 26218 with the final step of the induction. The induction argument shows that every subset of 1...(𝑃 − 1) that is closed under inverse and contains 𝑃 − 1 multiplies to -1 mod 𝑃, and clearly 1...(𝑃 − 1) itself is such a set. Thus, the product of all the elements is -1, and all that is left is to translate the group sum notation (which we used for its unordered summing capabilities) into an ordered sequence to match the definition of the factorial. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝑇 = (mulGrp‘ℂfld) & ⊢ 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)} ⇒ ⊢ (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) | ||
Theorem | wilth 26220 | Wilson's theorem. A number is prime iff it is greater than or equal to 2 and (𝑁 − 1)! is congruent to -1, mod 𝑁, or alternatively if 𝑁 divides (𝑁 − 1)! + 1. In this part of the proof we show the relatively simple reverse implication; see wilthlem3 26219 for the forward implication. This is Metamath 100 proof #51. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1))) | ||
Theorem | wilthimp 26221 | The forward implication of Wilson's theorem wilth 26220 (see wilthlem3 26219), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.) |
⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) | ||
Theorem | ftalem1 26222* | Lemma for fta 26229: "growth lemma". There exists some 𝑟 such that 𝐹 is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) | ||
Theorem | ftalem2 26223* | Lemma for fta 26229. There exists some 𝑟 such that 𝐹 has magnitude greater than 𝐹(0) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)) & ⊢ 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴‘𝑁)) / 2)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) | ||
Theorem | ftalem3 26224* | Lemma for fta 26229. There exists a global minimum of the function abs ∘ 𝐹. The proof uses a circle of radius 𝑟 where 𝑟 is the value coming from ftalem1 26222; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅} & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥))) | ||
Theorem | ftalem4 26225* | Lemma for fta 26229: Closure of the auxiliary variables for ftalem5 26226. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐹‘0) ≠ 0) & ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) & ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) & ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) & ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) ⇒ ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) | ||
Theorem | ftalem5 26226* | Lemma for fta 26229: Main proof. We have already shifted the minimum found in ftalem3 26224 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let 𝐾 be the lowest term in the polynomial that is nonzero, and let 𝑇 be a 𝐾-th root of -𝐹(0) / 𝐴(𝐾). Then an evaluation of 𝐹(𝑇𝑋) where 𝑋 is a sufficiently small positive number yields 𝐹(0) for the first term and -𝐹(0) · 𝑋↑𝐾 for the 𝐾-th term, and all higher terms are bounded because 𝑋 is small. Thus, abs(𝐹(𝑇𝑋)) ≤ abs(𝐹(0))(1 − 𝑋↑𝐾) < abs(𝐹(0)), in contradiction to our choice of 𝐹(0) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐹‘0) ≠ 0) & ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) & ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) & ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) & ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹‘𝑥)) < (abs‘(𝐹‘0))) | ||
Theorem | ftalem6 26227* | Lemma for fta 26229: Discharge the auxiliary variables in ftalem5 26226. (Contributed by Mario Carneiro, 20-Sep-2014.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐹‘0) ≠ 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹‘𝑥)) < (abs‘(𝐹‘0))) | ||
Theorem | ftalem7 26228* | Lemma for fta 26229. Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (𝐹‘𝑋) ≠ 0) ⇒ ⊢ (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑋)) ≤ (abs‘(𝐹‘𝑥))) | ||
Theorem | fta 26229* | The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹‘𝑧) = 0) | ||
Theorem | basellem1 26230 | Lemma for basel 26239. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.) Replace OLD theorem. (Revised by Wolf Lammen, 18-Sep-2020.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) ⇒ ⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2))) | ||
Theorem | basellem2 26231* | Lemma for basel 26239. Show that 𝑃 is a polynomial of degree 𝑀, and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) ⇒ ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛)))))) | ||
Theorem | basellem3 26232* | Lemma for basel 26239. Using the binomial theorem and de Moivre's formula, we have the identity e↑i𝑁𝑥 / (sin𝑥)↑𝑛 = Σ𝑚 ∈ (0...𝑁)(𝑁C𝑚)(i↑𝑚)(cot𝑥)↑(𝑁 − 𝑚), so taking imaginary parts yields sin(𝑁𝑥) / (sin𝑥)↑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑁C2𝑗)(-1)↑(𝑀 − 𝑗) (cot𝑥)↑(-2𝑗) = 𝑃((cot𝑥)↑2), where 𝑁 = 2𝑀 + 1. (Contributed by Mario Carneiro, 30-Jul-2014.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) ⇒ ⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑃‘((tan‘𝐴)↑-2)) = ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))) | ||
Theorem | basellem4 26233* | Lemma for basel 26239. By basellem3 26232, the expression 𝑃((cot𝑥)↑2) = sin(𝑁𝑥) / (sin𝑥)↑𝑁 goes to zero whenever 𝑥 = 𝑛π / 𝑁 for some 𝑛 ∈ (1...𝑀), so this function enumerates 𝑀 distinct roots of a degree- 𝑀 polynomial, which must therefore be all the roots by fta1 25468. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) ⇒ ⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0})) | ||
Theorem | basellem5 26234* | Lemma for basel 26239. Using vieta1 25472, we can calculate the sum of the roots of 𝑃 as the quotient of the top two coefficients, and since the function 𝑇 enumerates the roots, we are left with an equation that sums the cot↑2 function at the 𝑀 different roots. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) ⇒ ⊢ (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) | ||
Theorem | basellem6 26235 | Lemma for basel 26239. The function 𝐺 goes to zero because it is bounded by 1 / 𝑛. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ⇒ ⊢ 𝐺 ⇝ 0 | ||
Theorem | basellem7 26236 | Lemma for basel 26239. The function 1 + 𝐴 · 𝐺 for any fixed 𝐴 goes to 1. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1 | ||
Theorem | basellem8 26237* | Lemma for basel 26239. The function 𝐹 of partial sums of the inverse squares is bounded below by 𝐽 and above by 𝐾, obtained by summing the inequality cot↑2𝑥 ≤ 1 / 𝑥↑2 ≤ csc↑2𝑥 = cot↑2𝑥 + 1 over the 𝑀 roots of the polynomial 𝑃, and applying the identity basellem5 26234. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) & ⊢ 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f − 𝐺)) & ⊢ 𝐽 = (𝐻 ∘f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) & ⊢ 𝐾 = (𝐻 ∘f · ((ℕ × {1}) ∘f + 𝐺)) & ⊢ 𝑁 = ((2 · 𝑀) + 1) ⇒ ⊢ (𝑀 ∈ ℕ → ((𝐽‘𝑀) ≤ (𝐹‘𝑀) ∧ (𝐹‘𝑀) ≤ (𝐾‘𝑀))) | ||
Theorem | basellem9 26238* | Lemma for basel 26239. Since by basellem8 26237 𝐹 is bounded by two expressions that tend to π↑2 / 6, 𝐹 must also go to π↑2 / 6 by the squeeze theorem climsqz 15350. But the series 𝐹 is exactly the partial sums of 𝑘↑-2, so it follows that this is also the value of the infinite sum Σ𝑘 ∈ ℕ(𝑘↑-2). (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) & ⊢ 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f − 𝐺)) & ⊢ 𝐽 = (𝐻 ∘f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) & ⊢ 𝐾 = (𝐻 ∘f · ((ℕ × {1}) ∘f + 𝐺)) ⇒ ⊢ Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6) | ||
Theorem | basel 26239 | The sum of the inverse squares is π↑2 / 6. This is commonly known as the Basel problem, with the first known proof attributed to Euler. See http://en.wikipedia.org/wiki/Basel_problem. This particular proof approach is due to Cauchy (1821). This is Metamath 100 proof #14. (Contributed by Mario Carneiro, 30-Jul-2014.) |
⊢ Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6) | ||
Syntax | ccht 26240 | Extend class notation with the first Chebyshev function. |
class θ | ||
Syntax | cvma 26241 | Extend class notation with the von Mangoldt function. |
class Λ | ||
Syntax | cchp 26242 | Extend class notation with the second Chebyshev function. |
class ψ | ||
Syntax | cppi 26243 | Extend class notation with the prime-counting function pi. |
class π | ||
Syntax | cmu 26244 | Extend class notation with the Möbius function. |
class μ | ||
Syntax | csgm 26245 | Extend class notation with the divisor function. |
class σ | ||
Definition | df-cht 26246* | Define the first Chebyshev function, which adds up the logarithms of all primes less than 𝑥, see definition in [ApostolNT] p. 75. The symbol used to represent this function is sometimes the variant greek letter theta shown here and sometimes the greek letter psi, ψ; however, this notation can also refer to the second Chebyshev function, which adds up the logarithms of prime powers instead, see df-chp 26248. See https://en.wikipedia.org/wiki/Chebyshev_function 26248 for a discussion of the two functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | ||
Definition | df-vma 26247* | Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0)) | ||
Definition | df-chp 26248* | Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than 𝑥, see definition in [ApostolNT] p. 75. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) | ||
Definition | df-ppi 26249 | Define the prime π function, which counts the number of primes less than or equal to 𝑥, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) | ||
Definition | df-mu 26250* | Define the Möbius function, which is zero for non-squarefree numbers and is -1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in [ApostolNT] p. 24. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})))) | ||
Definition | df-sgm 26251* | Define the sum of positive divisors function (𝑥 σ 𝑛), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For 𝑥 = 0, (𝑥 σ 𝑛) counts the number of divisors of 𝑛, i.e. (0 σ 𝑛) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) | ||
Theorem | efnnfsumcl 26252* | Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (exp‘𝐵) ∈ ℕ) ⇒ ⊢ (𝜑 → (exp‘Σ𝑘 ∈ 𝐴 𝐵) ∈ ℕ) | ||
Theorem | ppisval 26253 | The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) | ||
Theorem | ppisval2 26254 | The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) | ||
Theorem | ppifi 26255 | The set of primes less than 𝐴 is a finite set. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) | ||
Theorem | prmdvdsfi 26256* | The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | ||
Theorem | chtf 26257 | Domain and range of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ θ:ℝ⟶ℝ | ||
Theorem | chtcl 26258 | Real closure of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ) | ||
Theorem | chtval 26259* | Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) | ||
Theorem | efchtcl 26260 | The Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (exp‘(θ‘𝐴)) ∈ ℕ) | ||
Theorem | chtge0 26261 | The Chebyshev function is always positive. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (θ‘𝐴)) | ||
Theorem | vmaval 26262* | Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⇒ ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) | ||
Theorem | isppw 26263* | Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) | ||
Theorem | isppw2 26264* | Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) | ||
Theorem | vmappw 26265 | Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) | ||
Theorem | vmaprm 26266 | Value of the von Mangoldt function at a prime. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝑃 ∈ ℙ → (Λ‘𝑃) = (log‘𝑃)) | ||
Theorem | vmacl 26267 | Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) ∈ ℝ) | ||
Theorem | vmaf 26268 | Functionality of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ Λ:ℕ⟶ℝ | ||
Theorem | efvmacl 26269 | The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → (exp‘(Λ‘𝐴)) ∈ ℕ) | ||
Theorem | vmage0 26270 | The von Mangoldt function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → 0 ≤ (Λ‘𝐴)) | ||
Theorem | chpval 26271* | Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) | ||
Theorem | chpf 26272 | Functionality of the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ ψ:ℝ⟶ℝ | ||
Theorem | chpcl 26273 | Closure for the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) | ||
Theorem | efchpcl 26274 | The second Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (exp‘(ψ‘𝐴)) ∈ ℕ) | ||
Theorem | chpge0 26275 | The second Chebyshev function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (ψ‘𝐴)) | ||
Theorem | ppival 26276 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) | ||
Theorem | ppival2 26277 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014.) |
⊢ (𝐴 ∈ ℤ → (π‘𝐴) = (♯‘((2...𝐴) ∩ ℙ))) | ||
Theorem | ppival2g 26278 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 2 ∈ (ℤ≥‘𝑀)) → (π‘𝐴) = (♯‘((𝑀...𝐴) ∩ ℙ))) | ||
Theorem | ppif 26279 | Domain and range of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ π:ℝ⟶ℕ0 | ||
Theorem | ppicl 26280 | Real closure of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (π‘𝐴) ∈ ℕ0) | ||
Theorem | muval 26281* | The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | ||
Theorem | muval1 26282 | The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑃 ∈ (ℤ≥‘2) ∧ (𝑃↑2) ∥ 𝐴) → (μ‘𝐴) = 0) | ||
Theorem | muval2 26283* | The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | ||
Theorem | isnsqf 26284* | Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | ||
Theorem | issqf 26285* | Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) | ||
Theorem | sqfpc 26286 | The prime count of a squarefree number is at most 1. (Contributed by Mario Carneiro, 1-Jul-2015.) |
⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt 𝐴) ≤ 1) | ||
Theorem | dvdssqf 26287 | A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → ((μ‘𝐴) ≠ 0 → (μ‘𝐵) ≠ 0)) | ||
Theorem | sqf11 26288* | A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.) |
⊢ (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵))) | ||
Theorem | muf 26289 | The Möbius function is a function into the integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ μ:ℕ⟶ℤ | ||
Theorem | mucl 26290 | Closure of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝐴 ∈ ℕ → (μ‘𝐴) ∈ ℤ) | ||
Theorem | sgmval 26291* | The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝑐𝐴)) | ||
Theorem | sgmval2 26292* | The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) | ||
Theorem | 0sgm 26293* | The value of the sum-of-divisors function, usually denoted σ<SUB>0</SUB>(<i>n</i>). (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝐴 ∈ ℕ → (0 σ 𝐴) = (♯‘{𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴})) | ||
Theorem | sgmf 26294 | The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
⊢ σ :(ℂ × ℕ)⟶ℂ | ||
Theorem | sgmcl 26295 | Closure of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℂ) | ||
Theorem | sgmnncl 26296 | Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) | ||
Theorem | mule1 26297 | The Möbius function takes on values in magnitude at most 1. (Together with mucl 26290, this implies that it takes a value in {-1, 0, 1} for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝐴 ∈ ℕ → (abs‘(μ‘𝐴)) ≤ 1) | ||
Theorem | chtfl 26298 | The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (θ‘(⌊‘𝐴)) = (θ‘𝐴)) | ||
Theorem | chpfl 26299 | The second Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 9-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) | ||
Theorem | ppiprm 26300 | The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π‘𝐴) + 1)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |