| Metamath
Proof Explorer Theorem List (p. 263 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | plycjOLD 26201* | Obsolete version of plycj 26199 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | ||
| Theorem | coecjOLD 26202 | Obsolete version of coecj 26200 as of 22-Sep-2025. Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) | ||
| Theorem | plyrecj 26203 | A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) | ||
| Theorem | plymul0or 26204 | Polynomial multiplication has no zero divisors. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹 ∘f · 𝐺) = 0𝑝 ↔ (𝐹 = 0𝑝 ∨ 𝐺 = 0𝑝))) | ||
| Theorem | ofmulrt 26205 | The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (◡(𝐹 ∘f · 𝐺) “ {0}) = ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0}))) | ||
| Theorem | plyreres 26206 | Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) | ||
| Theorem | dvply1 26207* | Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) | ||
| Theorem | dvply2g 26208 | The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11108. (Revised by GG, 30-Apr-2025.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Theorem | dvply2gOLD 26209 | Obsolete version of dvply2g 26208 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
| Theorem | dvply2 26210 | The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈ (Poly‘ℂ)) | ||
| Theorem | dvnply2 26211 | Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) | ||
| Theorem | dvnply 26212 | Polynomials have polynomials as derivatives of all orders. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘ℂ)) | ||
| Theorem | plycpn 26213 | Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) | ||
| Syntax | cquot 26214 | Extend class notation to include the quotient of a polynomial division. |
| class quot | ||
| Definition | df-quot 26215* | Define the quotient function on polynomials. This is the 𝑞 of the expression 𝑓 = 𝑔 · 𝑞 + 𝑟 in the division algorithm. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (℩𝑞 ∈ (Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)))) | ||
| Theorem | quotval 26216* | Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
| Theorem | plydivlem1 26217* | Lemma for plydivalg 26223. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → 0 ∈ 𝑆) | ||
| Theorem | plydivlem2 26218* | Lemma for plydivalg 26223. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝜑 ∧ 𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆)) | ||
| Theorem | plydivlem3 26219* | Lemma for plydivex 26221. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plydivlem4 26220* | Lemma for plydivex 26221. Induction step. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → (𝑀 − 𝑁) = 𝐷) & ⊢ (𝜑 → 𝐹 ≠ 0𝑝) & ⊢ 𝑈 = (𝑓 ∘f − (𝐺 ∘f · 𝑝)) & ⊢ 𝐻 = (𝑧 ∈ ℂ ↦ (((𝐴‘𝑀) / (𝐵‘𝑁)) · (𝑧↑𝐷))) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − 𝑁) < 𝐷) → ∃𝑝 ∈ (Poly‘𝑆)(𝑈 = 0𝑝 ∨ (deg‘𝑈) < 𝑁))) & ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < 𝑁)) | ||
| Theorem | plydivex 26221* | Lemma for plydivalg 26223. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plydiveu 26222* | Lemma for plydivalg 26223. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → 𝑞 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) & ⊢ 𝑇 = (𝐹 ∘f − (𝐺 ∘f · 𝑝)) & ⊢ (𝜑 → 𝑝 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (𝑇 = 0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺))) ⇒ ⊢ (𝜑 → 𝑝 = 𝑞) | ||
| Theorem | plydivalg 26223* | The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹 − 𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | quotlem 26224* | Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
| Theorem | quotcl 26225* | The quotient of two polynomials in a field 𝑆 is also in the field. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) ⇒ ⊢ (𝜑 → (𝐹 quot 𝐺) ∈ (Poly‘𝑆)) | ||
| Theorem | quotcl2 26226 | Closure of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | ||
| Theorem | quotdgr 26227 | Remainder property of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
| Theorem | plyremlem 26228 | Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) ⇒ ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) | ||
| Theorem | plyrem 26229 | The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 16472). If a polynomial 𝐹 is divided by the linear factor 𝑥 − 𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹‘𝐴)})) | ||
| Theorem | facth 26230 | The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) | ||
| Theorem | fta1lem 26231* | Lemma for fta1 26232. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝})) & ⊢ (𝜑 → (deg‘𝐹) = (𝐷 + 1)) & ⊢ (𝜑 → 𝐴 ∈ (◡𝐹 “ {0})) & ⊢ (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((◡𝑔 “ {0}) ∈ Fin ∧ (♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔)))) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) | ||
| Theorem | fta1 26232 | The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg(𝐹) roots. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝑅 = (◡𝐹 “ {0}) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) | ||
| Theorem | quotcan 26233 | Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| ⊢ 𝐻 = (𝐹 ∘f · 𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹) | ||
| Theorem | vieta1lem1 26234* | Lemma for vieta1 26236. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐷 + 1) = 𝑁) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) & ⊢ 𝑄 = (𝐹 quot (Xp ∘f − (ℂ × {𝑧}))) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄))) | ||
| Theorem | vieta1lem2 26235* | Lemma for vieta1 26236: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp − 𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (◡𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥 ∈ 𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴‘𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp − 𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷 − 𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥 ∈ 𝑅𝑥 = -𝐴‘𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐷 + 1) = 𝑁) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) & ⊢ 𝑄 = (𝐹 quot (Xp ∘f − (ℂ × {𝑧}))) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | ||
| Theorem | vieta1 26236* | The first-order Vieta's formula (see http://en.wikipedia.org/wiki/Vieta%27s_formulas). If a polynomial of degree 𝑁 has 𝑁 distinct roots, then the sum over these roots can be calculated as -𝐴(𝑁 − 1) / 𝐴(𝑁). (If the roots are not distinct, then this formula is still true but must double-count some of the roots according to their multiplicities.) (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | ||
| Theorem | plyexmo 26237* | An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.) |
| ⊢ ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝 ↾ 𝐷) = 𝐹)) | ||
| Syntax | caa 26238 | Extend class notation to include the set of algebraic numbers. |
| class 𝔸 | ||
| Definition | df-aa 26239 | Define the set of algebraic numbers. An algebraic number is a root of a nonzero polynomial over the integers. Here we construct it as the union of all kernels (preimages of {0}) of all polynomials in (Poly‘ℤ), except the zero polynomial 0𝑝. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) | ||
| Theorem | elaa 26240* | Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | ||
| Theorem | aacn 26241 | An algebraic number is a complex number. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | ||
| Theorem | aasscn 26242 | The algebraic numbers are a subset of the complex numbers. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ 𝔸 ⊆ ℂ | ||
| Theorem | elqaalem1 26243* | Lemma for elqaa 26246. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) | ||
| Theorem | elqaalem2 26244* | Lemma for elqaa 26246. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) & ⊢ 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁‘𝐾))) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁‘𝐾)) = 0) | ||
| Theorem | elqaalem3 26245* | Lemma for elqaa 26246. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝔸) | ||
| Theorem | elqaa 26246* | The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa 26240 are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof shortened by AV, 3-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | ||
| Theorem | qaa 26247 | Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸) | ||
| Theorem | qssaa 26248 | The rational numbers are contained in the algebraic numbers. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ ℚ ⊆ 𝔸 | ||
| Theorem | iaa 26249 | The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ i ∈ 𝔸 | ||
| Theorem | aareccl 26250 | The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸) | ||
| Theorem | aacjcl 26251 | The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) | ||
| Theorem | aannenlem1 26252* | Lemma for aannen 26255. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ (𝐴 ∈ ℕ0 → (𝐻‘𝐴) ∈ Fin) | ||
| Theorem | aannenlem2 26253* | Lemma for aannen 26255. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ 𝔸 = ∪ ran 𝐻 | ||
| Theorem | aannenlem3 26254* | The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ 𝔸 ≈ ℕ | ||
| Theorem | aannen 26255 | The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝔸 ≈ ℕ | ||
| Theorem | aalioulem1 26256 | Lemma for aaliou 26262. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑋 ∈ ℤ) & ⊢ (𝜑 → 𝑌 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ) | ||
| Theorem | aalioulem2 26257* | Lemma for aaliou 26262. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem3 26258* | Lemma for aaliou 26262. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑟 ∈ ℝ ((abs‘(𝐴 − 𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑟))) ≤ (abs‘(𝐴 − 𝑟)))) | ||
| Theorem | aalioulem4 26259* | Lemma for aaliou 26262. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem5 26260* | Lemma for aaliou 26262. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
| Theorem | aalioulem6 26261* | Lemma for aaliou 26262. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou 26262* | Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | geolim3 26263* | Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐵) < 1) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵))) | ||
| Theorem | aaliou2 26264* | Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou2b 26265* | Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
| Theorem | aaliou3lem1 26266* | Lemma for aaliou3 26275. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) | ||
| Theorem | aaliou3lem2 26267* | Lemma for aaliou3 26275. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐵) ∈ (0(,](𝐺‘𝐵))) | ||
| Theorem | aaliou3lem3 26268* | Lemma for aaliou3 26275. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ≤ (2 · (2↑-(!‘𝐴))))) | ||
| Theorem | aaliou3lem8 26269* | Lemma for aaliou3 26275. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴))) | ||
| Theorem | aaliou3lem4 26270* | Lemma for aaliou3 26275. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ 𝐿 ∈ ℝ | ||
| Theorem | aaliou3lem5 26271* | Lemma for aaliou3 26275. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) | ||
| Theorem | aaliou3lem6 26272* | Lemma for aaliou3 26275. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) ∈ ℤ) | ||
| Theorem | aaliou3lem7 26273* | Lemma for aaliou3 26275. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻‘𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) | ||
| Theorem | aaliou3lem9 26274* | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
| ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ ¬ 𝐿 ∈ 𝔸 | ||
| Theorem | aaliou3 26275 | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014.) |
| ⊢ Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∉ 𝔸 | ||
| Syntax | ctayl 26276 | Taylor polynomial of a function. |
| class Tayl | ||
| Syntax | cana 26277 | The class of analytic functions. |
| class Ana | ||
| Definition | df-tayl 26278* | Define the Taylor polynomial or Taylor series of a function. TODO-AV: 𝑛 ∈ (ℕ0 ∪ {+∞}) should be replaced by 𝑛 ∈ ℕ0*. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 ∈ ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) | ||
| Definition | df-ana 26279* | Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) | ||
| Theorem | taylfvallem1 26280* | Lemma for taylfval 26282. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
| Theorem | taylfvallem 26281* | Lemma for taylfval 26282. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)))) ⊆ ℂ) | ||
| Theorem | taylfval 26282* |
Define the Taylor polynomial of a function. The constant Tayl is a
function of five arguments: 𝑆 is the base set with respect to
evaluate the derivatives (generally ℝ or
ℂ), 𝐹 is the
function we are approximating, at point 𝐵, to order 𝑁. The
result is a polynomial function of 𝑥.
This "extended" version of taylpfval 26288 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) | ||
| Theorem | eltayl 26283* | Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))))))) | ||
| Theorem | taylf 26284* | The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:dom 𝑇⟶ℂ) | ||
| Theorem | tayl0 26285* | The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇‘𝐵) = (𝐹‘𝐵))) | ||
| Theorem | taylplem1 26286* | Lemma for taylpfval 26288 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | ||
| Theorem | taylplem2 26287* | Lemma for taylpfval 26288 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
| Theorem | taylpfval 26288* | Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) | ||
| Theorem | taylpf 26289 | The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:ℂ⟶ℂ) | ||
| Theorem | taylpval 26290* | Value of the Taylor polynomial. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑇‘𝑋) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))) | ||
| Theorem | taylply2 26291* | The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 26293 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11108. (Revised by GG, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | taylply2OLD 26292* | Obsolete version of taylply2 26291 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | taylply 26293 | The Taylor polynomial is a polynomial of degree (at most) 𝑁. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
| Theorem | dvtaylp 26294 | The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1))) ⇒ ⊢ (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵)) | ||
| Theorem | dvntaylp 26295 | The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀))) ⇒ ⊢ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) | ||
| Theorem | dvntaylp0 26296 | The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) | ||
| Theorem | taylthlem1 26297* | Lemma for taylth 26300. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'Hôpital's rule. However, since our proof of L'Hôpital assumes that 𝑆 = ℝ, we can only do this part generically, and for taylth 26300 itself we must restrict to ℝ. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑛))‘𝑦)) / ((𝑦 − 𝐵)↑𝑛))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑛 + 1)))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) | ||
| Theorem | taylthlem2 26298* | Lemma for taylth 26300. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11108. (Revised by GG, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) & ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) | ||
| Theorem | taylthlem2OLD 26299* | Obsolete version of taylthlem2 26298 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) & ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) | ||
| Theorem | taylth 26300* | Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) ⇒ ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |