| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsis | Structured version Visualization version GIF version | ||
| Description: Transfinite induction schema for surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| onsis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| onsis.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| onsis.3 | ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) |
| Ref | Expression |
|---|---|
| onsis | ⊢ (𝐴 ∈ Ons → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onswe 28222 | . 2 ⊢ <s We Ons | |
| 2 | onsse 28223 | . 2 ⊢ <s Se Ons | |
| 3 | onsis.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | onsis.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 5 | vex 3463 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 5 | elpred 6307 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦 ∈ Pred( <s , Ons, 𝑥) ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝑥))) |
| 7 | 6 | elv 3464 | . . . . . 6 ⊢ (𝑦 ∈ Pred( <s , Ons, 𝑥) ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝑥)) |
| 8 | 7 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ Pred( <s , Ons, 𝑥) → 𝜓) ↔ ((𝑦 ∈ Ons ∧ 𝑦 <s 𝑥) → 𝜓)) |
| 9 | impexp 450 | . . . . 5 ⊢ (((𝑦 ∈ Ons ∧ 𝑦 <s 𝑥) → 𝜓) ↔ (𝑦 ∈ Ons → (𝑦 <s 𝑥 → 𝜓))) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ ((𝑦 ∈ Pred( <s , Ons, 𝑥) → 𝜓) ↔ (𝑦 ∈ Ons → (𝑦 <s 𝑥 → 𝜓))) |
| 11 | 10 | ralbii2 3078 | . . 3 ⊢ (∀𝑦 ∈ Pred ( <s , Ons, 𝑥)𝜓 ↔ ∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓)) |
| 12 | onsis.3 | . . 3 ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) | |
| 13 | 11, 12 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Pred ( <s , Ons, 𝑥)𝜓 → 𝜑)) |
| 14 | 1, 2, 3, 4, 13 | wfis3 6350 | 1 ⊢ (𝐴 ∈ Ons → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 class class class wbr 5119 Predcpred 6289 <s cslt 27604 Onscons 28204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-ons 28205 |
| This theorem is referenced by: bdayon 28225 |
| Copyright terms: Public domain | W3C validator |