| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsis | Structured version Visualization version GIF version | ||
| Description: Transfinite induction schema for surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| onsis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| onsis.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| onsis.3 | ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) |
| Ref | Expression |
|---|---|
| onsis | ⊢ (𝐴 ∈ Ons → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onswe 28177 | . 2 ⊢ <s We Ons | |
| 2 | onsse 28178 | . 2 ⊢ <s Se Ons | |
| 3 | onsis.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | onsis.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 5 | vex 3440 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 5 | elpred 6266 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦 ∈ Pred( <s , Ons, 𝑥) ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝑥))) |
| 7 | 6 | elv 3441 | . . . . . 6 ⊢ (𝑦 ∈ Pred( <s , Ons, 𝑥) ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝑥)) |
| 8 | 7 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ Pred( <s , Ons, 𝑥) → 𝜓) ↔ ((𝑦 ∈ Ons ∧ 𝑦 <s 𝑥) → 𝜓)) |
| 9 | impexp 450 | . . . . 5 ⊢ (((𝑦 ∈ Ons ∧ 𝑦 <s 𝑥) → 𝜓) ↔ (𝑦 ∈ Ons → (𝑦 <s 𝑥 → 𝜓))) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ ((𝑦 ∈ Pred( <s , Ons, 𝑥) → 𝜓) ↔ (𝑦 ∈ Ons → (𝑦 <s 𝑥 → 𝜓))) |
| 11 | 10 | ralbii2 3071 | . . 3 ⊢ (∀𝑦 ∈ Pred ( <s , Ons, 𝑥)𝜓 ↔ ∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓)) |
| 12 | onsis.3 | . . 3 ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) | |
| 13 | 11, 12 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Pred ( <s , Ons, 𝑥)𝜓 → 𝜑)) |
| 14 | 1, 2, 3, 4, 13 | wfis3 6305 | 1 ⊢ (𝐴 ∈ Ons → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 class class class wbr 5092 Predcpred 6248 <s cslt 27550 Onscons 28159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-made 27759 df-old 27760 df-left 27762 df-right 27763 df-ons 28160 |
| This theorem is referenced by: bdayon 28180 |
| Copyright terms: Public domain | W3C validator |