| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsis | Structured version Visualization version GIF version | ||
| Description: Transfinite induction schema for surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| onsis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| onsis.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| onsis.3 | ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) |
| Ref | Expression |
|---|---|
| onsis | ⊢ (𝐴 ∈ Ons → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onswe 28210 | . 2 ⊢ <s We Ons | |
| 2 | onsse 28211 | . 2 ⊢ <s Se Ons | |
| 3 | onsis.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | onsis.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 5 | vex 3448 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 5 | elpred 6279 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦 ∈ Pred( <s , Ons, 𝑥) ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝑥))) |
| 7 | 6 | elv 3449 | . . . . . 6 ⊢ (𝑦 ∈ Pred( <s , Ons, 𝑥) ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝑥)) |
| 8 | 7 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ Pred( <s , Ons, 𝑥) → 𝜓) ↔ ((𝑦 ∈ Ons ∧ 𝑦 <s 𝑥) → 𝜓)) |
| 9 | impexp 450 | . . . . 5 ⊢ (((𝑦 ∈ Ons ∧ 𝑦 <s 𝑥) → 𝜓) ↔ (𝑦 ∈ Ons → (𝑦 <s 𝑥 → 𝜓))) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ ((𝑦 ∈ Pred( <s , Ons, 𝑥) → 𝜓) ↔ (𝑦 ∈ Ons → (𝑦 <s 𝑥 → 𝜓))) |
| 11 | 10 | ralbii2 3071 | . . 3 ⊢ (∀𝑦 ∈ Pred ( <s , Ons, 𝑥)𝜓 ↔ ∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓)) |
| 12 | onsis.3 | . . 3 ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) | |
| 13 | 11, 12 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Pred ( <s , Ons, 𝑥)𝜓 → 𝜑)) |
| 14 | 1, 2, 3, 4, 13 | wfis3 6318 | 1 ⊢ (𝐴 ∈ Ons → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 class class class wbr 5102 Predcpred 6261 <s cslt 27585 Onscons 28192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-no 27587 df-slt 27588 df-bday 27589 df-sle 27690 df-sslt 27727 df-scut 27729 df-made 27792 df-old 27793 df-left 27795 df-right 27796 df-ons 28193 |
| This theorem is referenced by: bdayon 28213 |
| Copyright terms: Public domain | W3C validator |