| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsis | Structured version Visualization version GIF version | ||
| Description: Transfinite induction schema for surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| onsis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| onsis.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| onsis.3 | ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) |
| Ref | Expression |
|---|---|
| onsis | ⊢ (𝐴 ∈ Ons → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onswe 28177 | . 2 ⊢ <s We Ons | |
| 2 | onsse 28178 | . 2 ⊢ <s Se Ons | |
| 3 | onsis.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | onsis.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 5 | vex 3454 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 5 | elpred 6294 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦 ∈ Pred( <s , Ons, 𝑥) ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝑥))) |
| 7 | 6 | elv 3455 | . . . . . 6 ⊢ (𝑦 ∈ Pred( <s , Ons, 𝑥) ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝑥)) |
| 8 | 7 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ Pred( <s , Ons, 𝑥) → 𝜓) ↔ ((𝑦 ∈ Ons ∧ 𝑦 <s 𝑥) → 𝜓)) |
| 9 | impexp 450 | . . . . 5 ⊢ (((𝑦 ∈ Ons ∧ 𝑦 <s 𝑥) → 𝜓) ↔ (𝑦 ∈ Ons → (𝑦 <s 𝑥 → 𝜓))) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ ((𝑦 ∈ Pred( <s , Ons, 𝑥) → 𝜓) ↔ (𝑦 ∈ Ons → (𝑦 <s 𝑥 → 𝜓))) |
| 11 | 10 | ralbii2 3072 | . . 3 ⊢ (∀𝑦 ∈ Pred ( <s , Ons, 𝑥)𝜓 ↔ ∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓)) |
| 12 | onsis.3 | . . 3 ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) | |
| 13 | 11, 12 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Pred ( <s , Ons, 𝑥)𝜓 → 𝜑)) |
| 14 | 1, 2, 3, 4, 13 | wfis3 6333 | 1 ⊢ (𝐴 ∈ Ons → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 class class class wbr 5110 Predcpred 6276 <s cslt 27559 Onscons 28159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-ons 28160 |
| This theorem is referenced by: bdayon 28180 |
| Copyright terms: Public domain | W3C validator |