![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1z | Structured version Visualization version GIF version |
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
coe1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1z.z | ⊢ 0 = (0g‘𝑃) |
coe1z.y | ⊢ 𝑌 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1z | ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6797 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → (1o × {𝑎}):1o⟶ℕ0) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}):1o⟶ℕ0) |
3 | nn0ex 12529 | . . . . 5 ⊢ ℕ0 ∈ V | |
4 | 1oex 8514 | . . . . 5 ⊢ 1o ∈ V | |
5 | 3, 4 | elmap 8909 | . . . 4 ⊢ ((1o × {𝑎}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {𝑎}):1o⟶ℕ0) |
6 | 2, 5 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}) ∈ (ℕ0 ↑m 1o)) |
7 | eqidd 2735 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) | |
8 | eqid 2734 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
9 | psr1baslem 22201 | . . . . 5 ⊢ (ℕ0 ↑m 1o) = {𝑐 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑐 “ ℕ) ∈ Fin} | |
10 | coe1z.y | . . . . 5 ⊢ 𝑌 = (0g‘𝑅) | |
11 | coe1z.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
12 | coe1z.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
13 | 8, 11, 12 | ply1mpl0 22273 | . . . . 5 ⊢ 0 = (0g‘(1o mPoly 𝑅)) |
14 | 1on 8516 | . . . . . 6 ⊢ 1o ∈ On | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1o ∈ On) |
16 | ringgrp 20255 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
17 | 8, 9, 10, 13, 15, 16 | mpl0 22043 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 = ((ℕ0 ↑m 1o) × {𝑌})) |
18 | fconstmpt 5750 | . . . 4 ⊢ ((ℕ0 ↑m 1o) × {𝑌}) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ 𝑌) | |
19 | 17, 18 | eqtrdi 2790 | . . 3 ⊢ (𝑅 ∈ Ring → 0 = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ 𝑌)) |
20 | eqidd 2735 | . . 3 ⊢ (𝑏 = (1o × {𝑎}) → 𝑌 = 𝑌) | |
21 | 6, 7, 19, 20 | fmptco 7148 | . 2 ⊢ (𝑅 ∈ Ring → ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
22 | 11 | ply1ring 22264 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
23 | eqid 2734 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
24 | 23, 12 | ring0cl 20280 | . . 3 ⊢ (𝑃 ∈ Ring → 0 ∈ (Base‘𝑃)) |
25 | eqid 2734 | . . . 4 ⊢ (coe1‘ 0 ) = (coe1‘ 0 ) | |
26 | eqid 2734 | . . . 4 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
27 | 25, 23, 11, 26 | coe1fval2 22227 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
28 | 22, 24, 27 | 3syl 18 | . 2 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
29 | fconstmpt 5750 | . . 3 ⊢ (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌) | |
30 | 29 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
31 | 21, 28, 30 | 3eqtr4d 2784 | 1 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {csn 4630 ↦ cmpt 5230 × cxp 5686 ∘ ccom 5692 Oncon0 6385 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 1oc1o 8497 ↑m cmap 8864 ℕ0cn0 12523 Basecbs 17244 0gc0g 17485 Ringcrg 20250 mPoly cmpl 21943 Poly1cpl1 22193 coe1cco1 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-mulg 19098 df-subg 19153 df-ghm 19243 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-subrng 20562 df-subrg 20586 df-psr 21946 df-mpl 21948 df-opsr 21950 df-psr1 22196 df-ply1 22198 df-coe1 22199 |
This theorem is referenced by: coe1fzgsumd 22323 decpmatid 22791 pmatcollpwscmatlem1 22810 fta1blem 26224 coe1zfv 33591 ply1gsumz 33598 hbtlem2 43112 |
Copyright terms: Public domain | W3C validator |