![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1z | Structured version Visualization version GIF version |
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
coe1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1z.z | ⊢ 0 = (0g‘𝑃) |
coe1z.y | ⊢ 𝑌 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1z | ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6736 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → (1o × {𝑎}):1o⟶ℕ0) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}):1o⟶ℕ0) |
3 | nn0ex 12428 | . . . . 5 ⊢ ℕ0 ∈ V | |
4 | 1oex 8427 | . . . . 5 ⊢ 1o ∈ V | |
5 | 3, 4 | elmap 8816 | . . . 4 ⊢ ((1o × {𝑎}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {𝑎}):1o⟶ℕ0) |
6 | 2, 5 | sylibr 233 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}) ∈ (ℕ0 ↑m 1o)) |
7 | eqidd 2732 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) | |
8 | eqid 2731 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
9 | psr1baslem 21593 | . . . . 5 ⊢ (ℕ0 ↑m 1o) = {𝑐 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑐 “ ℕ) ∈ Fin} | |
10 | coe1z.y | . . . . 5 ⊢ 𝑌 = (0g‘𝑅) | |
11 | coe1z.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
12 | coe1z.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
13 | 8, 11, 12 | ply1mpl0 21663 | . . . . 5 ⊢ 0 = (0g‘(1o mPoly 𝑅)) |
14 | 1on 8429 | . . . . . 6 ⊢ 1o ∈ On | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1o ∈ On) |
16 | ringgrp 19983 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
17 | 8, 9, 10, 13, 15, 16 | mpl0 21449 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 = ((ℕ0 ↑m 1o) × {𝑌})) |
18 | fconstmpt 5699 | . . . 4 ⊢ ((ℕ0 ↑m 1o) × {𝑌}) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ 𝑌) | |
19 | 17, 18 | eqtrdi 2787 | . . 3 ⊢ (𝑅 ∈ Ring → 0 = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ 𝑌)) |
20 | eqidd 2732 | . . 3 ⊢ (𝑏 = (1o × {𝑎}) → 𝑌 = 𝑌) | |
21 | 6, 7, 19, 20 | fmptco 7080 | . 2 ⊢ (𝑅 ∈ Ring → ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
22 | 11 | ply1ring 21656 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
23 | eqid 2731 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
24 | 23, 12 | ring0cl 20004 | . . 3 ⊢ (𝑃 ∈ Ring → 0 ∈ (Base‘𝑃)) |
25 | eqid 2731 | . . . 4 ⊢ (coe1‘ 0 ) = (coe1‘ 0 ) | |
26 | eqid 2731 | . . . 4 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
27 | 25, 23, 11, 26 | coe1fval2 21618 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
28 | 22, 24, 27 | 3syl 18 | . 2 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
29 | fconstmpt 5699 | . . 3 ⊢ (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌) | |
30 | 29 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
31 | 21, 28, 30 | 3eqtr4d 2781 | 1 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4591 ↦ cmpt 5193 × cxp 5636 ∘ ccom 5642 Oncon0 6322 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 1oc1o 8410 ↑m cmap 8772 ℕ0cn0 12422 Basecbs 17094 0gc0g 17335 Ringcrg 19978 mPoly cmpl 21345 Poly1cpl1 21585 coe1cco1 21586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11116 ax-resscn 11117 ax-1cn 11118 ax-icn 11119 ax-addcl 11120 ax-addrcl 11121 ax-mulcl 11122 ax-mulrcl 11123 ax-mulcom 11124 ax-addass 11125 ax-mulass 11126 ax-distr 11127 ax-i2m1 11128 ax-1ne0 11129 ax-1rid 11130 ax-rnegex 11131 ax-rrecex 11132 ax-cnre 11133 ax-pre-lttri 11134 ax-pre-lttrn 11135 ax-pre-ltadd 11136 ax-pre-mulgt0 11137 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-ofr 7623 df-om 7808 df-1st 7926 df-2nd 7927 df-supp 8098 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-map 8774 df-pm 8775 df-ixp 8843 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-fsupp 9313 df-sup 9387 df-oi 9455 df-card 9884 df-pnf 11200 df-mnf 11201 df-xr 11202 df-ltxr 11203 df-le 11204 df-sub 11396 df-neg 11397 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12423 df-z 12509 df-dec 12628 df-uz 12773 df-fz 13435 df-fzo 13578 df-seq 13917 df-hash 14241 df-struct 17030 df-sets 17047 df-slot 17065 df-ndx 17077 df-base 17095 df-ress 17124 df-plusg 17160 df-mulr 17161 df-sca 17163 df-vsca 17164 df-ip 17165 df-tset 17166 df-ple 17167 df-ds 17169 df-hom 17171 df-cco 17172 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18511 df-sgrp 18560 df-mnd 18571 df-mhm 18615 df-submnd 18616 df-grp 18765 df-minusg 18766 df-mulg 18887 df-subg 18939 df-ghm 19020 df-cntz 19111 df-cmn 19578 df-abl 19579 df-mgp 19911 df-ur 19928 df-ring 19980 df-subrg 20268 df-psr 21348 df-mpl 21350 df-opsr 21352 df-psr1 21588 df-ply1 21590 df-coe1 21591 |
This theorem is referenced by: coe1fzgsumd 21710 decpmatid 22156 pmatcollpwscmatlem1 22175 fta1blem 25570 ply1gsumz 32368 hbtlem2 41509 |
Copyright terms: Public domain | W3C validator |