MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1z Structured version   Visualization version   GIF version

Theorem coe1z 21716
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1z.p 𝑃 = (Poly1𝑅)
coe1z.z 0 = (0g𝑃)
coe1z.y 𝑌 = (0g𝑅)
Assertion
Ref Expression
coe1z (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑌}))

Proof of Theorem coe1z
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6767 . . . . 5 (𝑎 ∈ ℕ0 → (1o × {𝑎}):1o⟶ℕ0)
21adantl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}):1o⟶ℕ0)
3 nn0ex 12460 . . . . 5 0 ∈ V
4 1oex 8458 . . . . 5 1o ∈ V
53, 4elmap 8848 . . . 4 ((1o × {𝑎}) ∈ (ℕ0m 1o) ↔ (1o × {𝑎}):1o⟶ℕ0)
62, 5sylibr 233 . . 3 ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}) ∈ (ℕ0m 1o))
7 eqidd 2732 . . 3 (𝑅 ∈ Ring → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))
8 eqid 2731 . . . . 5 (1o mPoly 𝑅) = (1o mPoly 𝑅)
9 psr1baslem 21638 . . . . 5 (ℕ0m 1o) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐 “ ℕ) ∈ Fin}
10 coe1z.y . . . . 5 𝑌 = (0g𝑅)
11 coe1z.p . . . . . 6 𝑃 = (Poly1𝑅)
12 coe1z.z . . . . . 6 0 = (0g𝑃)
138, 11, 12ply1mpl0 21708 . . . . 5 0 = (0g‘(1o mPoly 𝑅))
14 1on 8460 . . . . . 6 1o ∈ On
1514a1i 11 . . . . 5 (𝑅 ∈ Ring → 1o ∈ On)
16 ringgrp 20019 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
178, 9, 10, 13, 15, 16mpl0 21494 . . . 4 (𝑅 ∈ Ring → 0 = ((ℕ0m 1o) × {𝑌}))
18 fconstmpt 5730 . . . 4 ((ℕ0m 1o) × {𝑌}) = (𝑏 ∈ (ℕ0m 1o) ↦ 𝑌)
1917, 18eqtrdi 2787 . . 3 (𝑅 ∈ Ring → 0 = (𝑏 ∈ (ℕ0m 1o) ↦ 𝑌))
20 eqidd 2732 . . 3 (𝑏 = (1o × {𝑎}) → 𝑌 = 𝑌)
216, 7, 19, 20fmptco 7111 . 2 (𝑅 ∈ Ring → ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = (𝑎 ∈ ℕ0𝑌))
2211ply1ring 21701 . . 3 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
23 eqid 2731 . . . 4 (Base‘𝑃) = (Base‘𝑃)
2423, 12ring0cl 20041 . . 3 (𝑃 ∈ Ring → 0 ∈ (Base‘𝑃))
25 eqid 2731 . . . 4 (coe10 ) = (coe10 )
26 eqid 2731 . . . 4 (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))
2725, 23, 11, 26coe1fval2 21663 . . 3 ( 0 ∈ (Base‘𝑃) → (coe10 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
2822, 24, 273syl 18 . 2 (𝑅 ∈ Ring → (coe10 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
29 fconstmpt 5730 . . 3 (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0𝑌)
3029a1i 11 . 2 (𝑅 ∈ Ring → (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0𝑌))
3121, 28, 303eqtr4d 2781 1 (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {csn 4622  cmpt 5224   × cxp 5667  ccom 5673  Oncon0 6353  wf 6528  cfv 6532  (class class class)co 7393  1oc1o 8441  m cmap 8803  0cn0 12454  Basecbs 17126  0gc0g 17367  Ringcrg 20014   mPoly cmpl 21390  Poly1cpl1 21630  coe1cco1 21631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-ofr 7654  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-fzo 13610  df-seq 13949  df-hash 14273  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17369  df-gsum 17370  df-prds 17375  df-pws 17377  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-mhm 18647  df-submnd 18648  df-grp 18797  df-minusg 18798  df-mulg 18923  df-subg 18975  df-ghm 19056  df-cntz 19147  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-subrg 20310  df-psr 21393  df-mpl 21395  df-opsr 21397  df-psr1 21633  df-ply1 21635  df-coe1 21636
This theorem is referenced by:  coe1fzgsumd  21755  decpmatid  22201  pmatcollpwscmatlem1  22220  fta1blem  25615  ply1gsumz  32507  hbtlem2  41635
  Copyright terms: Public domain W3C validator