MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1z Structured version   Visualization version   GIF version

Theorem coe1z 21344
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1z.p 𝑃 = (Poly1𝑅)
coe1z.z 0 = (0g𝑃)
coe1z.y 𝑌 = (0g𝑅)
Assertion
Ref Expression
coe1z (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑌}))

Proof of Theorem coe1z
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6647 . . . . 5 (𝑎 ∈ ℕ0 → (1o × {𝑎}):1o⟶ℕ0)
21adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}):1o⟶ℕ0)
3 nn0ex 12169 . . . . 5 0 ∈ V
4 1oex 8280 . . . . 5 1o ∈ V
53, 4elmap 8617 . . . 4 ((1o × {𝑎}) ∈ (ℕ0m 1o) ↔ (1o × {𝑎}):1o⟶ℕ0)
62, 5sylibr 233 . . 3 ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}) ∈ (ℕ0m 1o))
7 eqidd 2739 . . 3 (𝑅 ∈ Ring → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))
8 eqid 2738 . . . . 5 (1o mPoly 𝑅) = (1o mPoly 𝑅)
9 psr1baslem 21266 . . . . 5 (ℕ0m 1o) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐 “ ℕ) ∈ Fin}
10 coe1z.y . . . . 5 𝑌 = (0g𝑅)
11 coe1z.p . . . . . 6 𝑃 = (Poly1𝑅)
12 coe1z.z . . . . . 6 0 = (0g𝑃)
138, 11, 12ply1mpl0 21336 . . . . 5 0 = (0g‘(1o mPoly 𝑅))
14 1on 8274 . . . . . 6 1o ∈ On
1514a1i 11 . . . . 5 (𝑅 ∈ Ring → 1o ∈ On)
16 ringgrp 19703 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
178, 9, 10, 13, 15, 16mpl0 21122 . . . 4 (𝑅 ∈ Ring → 0 = ((ℕ0m 1o) × {𝑌}))
18 fconstmpt 5640 . . . 4 ((ℕ0m 1o) × {𝑌}) = (𝑏 ∈ (ℕ0m 1o) ↦ 𝑌)
1917, 18eqtrdi 2795 . . 3 (𝑅 ∈ Ring → 0 = (𝑏 ∈ (ℕ0m 1o) ↦ 𝑌))
20 eqidd 2739 . . 3 (𝑏 = (1o × {𝑎}) → 𝑌 = 𝑌)
216, 7, 19, 20fmptco 6983 . 2 (𝑅 ∈ Ring → ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = (𝑎 ∈ ℕ0𝑌))
2211ply1ring 21329 . . 3 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
23 eqid 2738 . . . 4 (Base‘𝑃) = (Base‘𝑃)
2423, 12ring0cl 19723 . . 3 (𝑃 ∈ Ring → 0 ∈ (Base‘𝑃))
25 eqid 2738 . . . 4 (coe10 ) = (coe10 )
26 eqid 2738 . . . 4 (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))
2725, 23, 11, 26coe1fval2 21291 . . 3 ( 0 ∈ (Base‘𝑃) → (coe10 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
2822, 24, 273syl 18 . 2 (𝑅 ∈ Ring → (coe10 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
29 fconstmpt 5640 . . 3 (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0𝑌)
3029a1i 11 . 2 (𝑅 ∈ Ring → (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0𝑌))
3121, 28, 303eqtr4d 2788 1 (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584  Oncon0 6251  wf 6414  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573  0cn0 12163  Basecbs 16840  0gc0g 17067  Ringcrg 19698   mPoly cmpl 21019  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-psr 21022  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  coe1fzgsumd  21383  decpmatid  21827  pmatcollpwscmatlem1  21846  fta1blem  25238  hbtlem2  40865
  Copyright terms: Public domain W3C validator