Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1z | Structured version Visualization version GIF version |
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
coe1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1z.z | ⊢ 0 = (0g‘𝑃) |
coe1z.y | ⊢ 𝑌 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1z | ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6557 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → (1o × {𝑎}):1o⟶ℕ0) | |
2 | 1 | adantl 485 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}):1o⟶ℕ0) |
3 | nn0ex 11945 | . . . . 5 ⊢ ℕ0 ∈ V | |
4 | 1oex 8125 | . . . . 5 ⊢ 1o ∈ V | |
5 | 3, 4 | elmap 8458 | . . . 4 ⊢ ((1o × {𝑎}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {𝑎}):1o⟶ℕ0) |
6 | 2, 5 | sylibr 237 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}) ∈ (ℕ0 ↑m 1o)) |
7 | eqidd 2759 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) | |
8 | eqid 2758 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
9 | psr1baslem 20914 | . . . . 5 ⊢ (ℕ0 ↑m 1o) = {𝑐 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑐 “ ℕ) ∈ Fin} | |
10 | coe1z.y | . . . . 5 ⊢ 𝑌 = (0g‘𝑅) | |
11 | coe1z.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
12 | coe1z.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
13 | 8, 11, 12 | ply1mpl0 20984 | . . . . 5 ⊢ 0 = (0g‘(1o mPoly 𝑅)) |
14 | 1on 8124 | . . . . . 6 ⊢ 1o ∈ On | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1o ∈ On) |
16 | ringgrp 19375 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
17 | 8, 9, 10, 13, 15, 16 | mpl0 20776 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 = ((ℕ0 ↑m 1o) × {𝑌})) |
18 | fconstmpt 5587 | . . . 4 ⊢ ((ℕ0 ↑m 1o) × {𝑌}) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ 𝑌) | |
19 | 17, 18 | eqtrdi 2809 | . . 3 ⊢ (𝑅 ∈ Ring → 0 = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ 𝑌)) |
20 | eqidd 2759 | . . 3 ⊢ (𝑏 = (1o × {𝑎}) → 𝑌 = 𝑌) | |
21 | 6, 7, 19, 20 | fmptco 6887 | . 2 ⊢ (𝑅 ∈ Ring → ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
22 | 11 | ply1ring 20977 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
23 | eqid 2758 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
24 | 23, 12 | ring0cl 19395 | . . 3 ⊢ (𝑃 ∈ Ring → 0 ∈ (Base‘𝑃)) |
25 | eqid 2758 | . . . 4 ⊢ (coe1‘ 0 ) = (coe1‘ 0 ) | |
26 | eqid 2758 | . . . 4 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
27 | 25, 23, 11, 26 | coe1fval2 20939 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
28 | 22, 24, 27 | 3syl 18 | . 2 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
29 | fconstmpt 5587 | . . 3 ⊢ (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌) | |
30 | 29 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
31 | 21, 28, 30 | 3eqtr4d 2803 | 1 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {csn 4525 ↦ cmpt 5115 × cxp 5525 ∘ ccom 5531 Oncon0 6173 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 1oc1o 8110 ↑m cmap 8421 ℕ0cn0 11939 Basecbs 16546 0gc0g 16776 Ringcrg 19370 mPoly cmpl 20673 Poly1cpl1 20906 coe1cco1 20907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-ofr 7411 df-om 7585 df-1st 7698 df-2nd 7699 df-supp 7841 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-pm 8424 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fsupp 8872 df-oi 9012 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-fz 12945 df-fzo 13088 df-seq 13424 df-hash 13746 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-tset 16647 df-ple 16648 df-0g 16778 df-gsum 16779 df-mre 16920 df-mrc 16921 df-acs 16923 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-mhm 18027 df-submnd 18028 df-grp 18177 df-minusg 18178 df-mulg 18297 df-subg 18348 df-ghm 18428 df-cntz 18519 df-cmn 18980 df-abl 18981 df-mgp 19313 df-ur 19325 df-ring 19372 df-subrg 19606 df-psr 20676 df-mpl 20678 df-opsr 20680 df-psr1 20909 df-ply1 20911 df-coe1 20912 |
This theorem is referenced by: coe1fzgsumd 21031 decpmatid 21475 pmatcollpwscmatlem1 21494 fta1blem 24873 hbtlem2 40469 |
Copyright terms: Public domain | W3C validator |