| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1z | Structured version Visualization version GIF version | ||
| Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1z.z | ⊢ 0 = (0g‘𝑃) |
| coe1z.y | ⊢ 𝑌 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| coe1z | ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6g 6749 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → (1o × {𝑎}):1o⟶ℕ0) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}):1o⟶ℕ0) |
| 3 | nn0ex 12448 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | 1oex 8444 | . . . . 5 ⊢ 1o ∈ V | |
| 5 | 3, 4 | elmap 8844 | . . . 4 ⊢ ((1o × {𝑎}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {𝑎}):1o⟶ℕ0) |
| 6 | 2, 5 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}) ∈ (ℕ0 ↑m 1o)) |
| 7 | eqidd 2730 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 9 | psr1baslem 22069 | . . . . 5 ⊢ (ℕ0 ↑m 1o) = {𝑐 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑐 “ ℕ) ∈ Fin} | |
| 10 | coe1z.y | . . . . 5 ⊢ 𝑌 = (0g‘𝑅) | |
| 11 | coe1z.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 12 | coe1z.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
| 13 | 8, 11, 12 | ply1mpl0 22141 | . . . . 5 ⊢ 0 = (0g‘(1o mPoly 𝑅)) |
| 14 | 1on 8446 | . . . . . 6 ⊢ 1o ∈ On | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1o ∈ On) |
| 16 | ringgrp 20147 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 17 | 8, 9, 10, 13, 15, 16 | mpl0 21915 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 = ((ℕ0 ↑m 1o) × {𝑌})) |
| 18 | fconstmpt 5700 | . . . 4 ⊢ ((ℕ0 ↑m 1o) × {𝑌}) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ 𝑌) | |
| 19 | 17, 18 | eqtrdi 2780 | . . 3 ⊢ (𝑅 ∈ Ring → 0 = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ 𝑌)) |
| 20 | eqidd 2730 | . . 3 ⊢ (𝑏 = (1o × {𝑎}) → 𝑌 = 𝑌) | |
| 21 | 6, 7, 19, 20 | fmptco 7101 | . 2 ⊢ (𝑅 ∈ Ring → ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
| 22 | 11 | ply1ring 22132 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 23 | eqid 2729 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 24 | 23, 12 | ring0cl 20176 | . . 3 ⊢ (𝑃 ∈ Ring → 0 ∈ (Base‘𝑃)) |
| 25 | eqid 2729 | . . . 4 ⊢ (coe1‘ 0 ) = (coe1‘ 0 ) | |
| 26 | eqid 2729 | . . . 4 ⊢ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) | |
| 27 | 25, 23, 11, 26 | coe1fval2 22095 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 28 | 22, 24, 27 | 3syl 18 | . 2 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))) |
| 29 | fconstmpt 5700 | . . 3 ⊢ (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌) | |
| 30 | 29 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0 ↦ 𝑌)) |
| 31 | 21, 28, 30 | 3eqtr4d 2774 | 1 ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 ↦ cmpt 5188 × cxp 5636 ∘ ccom 5642 Oncon0 6332 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 ↑m cmap 8799 ℕ0cn0 12442 Basecbs 17179 0gc0g 17402 Ringcrg 20142 mPoly cmpl 21815 Poly1cpl1 22061 coe1cco1 22062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 df-psr 21818 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-ply1 22066 df-coe1 22067 |
| This theorem is referenced by: coe1fzgsumd 22191 decpmatid 22657 pmatcollpwscmatlem1 22676 fta1blem 26076 coe1zfv 33556 ply1gsumz 33564 hbtlem2 43113 |
| Copyright terms: Public domain | W3C validator |