MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1z Structured version   Visualization version   GIF version

Theorem coe1z 22281
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1z.p 𝑃 = (Poly1𝑅)
coe1z.z 0 = (0g𝑃)
coe1z.y 𝑌 = (0g𝑅)
Assertion
Ref Expression
coe1z (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑌}))

Proof of Theorem coe1z
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6797 . . . . 5 (𝑎 ∈ ℕ0 → (1o × {𝑎}):1o⟶ℕ0)
21adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}):1o⟶ℕ0)
3 nn0ex 12529 . . . . 5 0 ∈ V
4 1oex 8514 . . . . 5 1o ∈ V
53, 4elmap 8909 . . . 4 ((1o × {𝑎}) ∈ (ℕ0m 1o) ↔ (1o × {𝑎}):1o⟶ℕ0)
62, 5sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0) → (1o × {𝑎}) ∈ (ℕ0m 1o))
7 eqidd 2735 . . 3 (𝑅 ∈ Ring → (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})))
8 eqid 2734 . . . . 5 (1o mPoly 𝑅) = (1o mPoly 𝑅)
9 psr1baslem 22201 . . . . 5 (ℕ0m 1o) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐 “ ℕ) ∈ Fin}
10 coe1z.y . . . . 5 𝑌 = (0g𝑅)
11 coe1z.p . . . . . 6 𝑃 = (Poly1𝑅)
12 coe1z.z . . . . . 6 0 = (0g𝑃)
138, 11, 12ply1mpl0 22273 . . . . 5 0 = (0g‘(1o mPoly 𝑅))
14 1on 8516 . . . . . 6 1o ∈ On
1514a1i 11 . . . . 5 (𝑅 ∈ Ring → 1o ∈ On)
16 ringgrp 20255 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
178, 9, 10, 13, 15, 16mpl0 22043 . . . 4 (𝑅 ∈ Ring → 0 = ((ℕ0m 1o) × {𝑌}))
18 fconstmpt 5750 . . . 4 ((ℕ0m 1o) × {𝑌}) = (𝑏 ∈ (ℕ0m 1o) ↦ 𝑌)
1917, 18eqtrdi 2790 . . 3 (𝑅 ∈ Ring → 0 = (𝑏 ∈ (ℕ0m 1o) ↦ 𝑌))
20 eqidd 2735 . . 3 (𝑏 = (1o × {𝑎}) → 𝑌 = 𝑌)
216, 7, 19, 20fmptco 7148 . 2 (𝑅 ∈ Ring → ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))) = (𝑎 ∈ ℕ0𝑌))
2211ply1ring 22264 . . 3 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
23 eqid 2734 . . . 4 (Base‘𝑃) = (Base‘𝑃)
2423, 12ring0cl 20280 . . 3 (𝑃 ∈ Ring → 0 ∈ (Base‘𝑃))
25 eqid 2734 . . . 4 (coe10 ) = (coe10 )
26 eqid 2734 . . . 4 (𝑎 ∈ ℕ0 ↦ (1o × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))
2725, 23, 11, 26coe1fval2 22227 . . 3 ( 0 ∈ (Base‘𝑃) → (coe10 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
2822, 24, 273syl 18 . 2 (𝑅 ∈ Ring → (coe10 ) = ( 0 ∘ (𝑎 ∈ ℕ0 ↦ (1o × {𝑎}))))
29 fconstmpt 5750 . . 3 (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0𝑌)
3029a1i 11 . 2 (𝑅 ∈ Ring → (ℕ0 × {𝑌}) = (𝑎 ∈ ℕ0𝑌))
3121, 28, 303eqtr4d 2784 1 (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  {csn 4630  cmpt 5230   × cxp 5686  ccom 5692  Oncon0 6385  wf 6558  cfv 6562  (class class class)co 7430  1oc1o 8497  m cmap 8864  0cn0 12523  Basecbs 17244  0gc0g 17485  Ringcrg 20250   mPoly cmpl 21943  Poly1cpl1 22193  coe1cco1 22194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-subrng 20562  df-subrg 20586  df-psr 21946  df-mpl 21948  df-opsr 21950  df-psr1 22196  df-ply1 22198  df-coe1 22199
This theorem is referenced by:  coe1fzgsumd  22323  decpmatid  22791  pmatcollpwscmatlem1  22810  fta1blem  26224  coe1zfv  33591  ply1gsumz  33598  hbtlem2  43112
  Copyright terms: Public domain W3C validator